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ABSTRACT

Singing Voice Separation (SVS) is a task which uses audio source

separation methods to isolate the vocal component from the back-

ground accompaniment for a song mix. This paper discusses the

methods of evaluating SVS algorithms, and determines how the

current state of the art measures correlate to human perception. A

modified ITU-R BS.1543 MUSHRA test is used to get the human

perceptual ratings for the outputs of various SVS algorithms, which

are correlated with widely used objective measures for source sep-

aration quality. The results show that while the objective measures

provide a moderate correlation with perceived intelligibility and

isolation, they may not adequately assess the overall perceptual

quality.

Index Terms— Singing Voice Separation, Source Separation,

Music Information Retrieval, MUSHRA

1. INTRODUCTION

Singing Voice Separation (SVS) has gained prominence as a Music

Information Retrieval (MIR) task in the recent years. The goal for

this task is to separate the lead vocals from the accompaniment

for professionally produced songs. Various algorithms have been

proposed which perform this task using diverse approaches. SVS

is often used as a pre-processing step in other MIR tasks such as

automatic lyrics recognition [1], singer identification [2–4], query

by singing/humming [5], etc. It may also be useful in the context of

applications such as karaoke, musical education, and audio remix-

ing.

In MIREX, the Music Information Retrieval Evaluation eX-

change, the performance of eleven submissions for the SVS task

was tested [6]. The quality of the output produced by these al-

gorithms was evaluated with objective measures such as NSDR

(Normalized Signal to Distortion Ratio), SIR (Signal to Interference

Ratio) and SAR (Signal to Artifacts Ratio) [6–9]; although these

measures are widely used, it is not well understood how they com-

pare to the perceived quality of the source separation as assessed

by a human. In this paper, we aim to bridge this gap, provide an

evaluation of these objective measures in the context of SVS, and

investigate their correlation to the subjective quality as reported by

human test subjects.

In Section 2 we discuss the current state-of-the-art measures

used to evaluate source separation. Section 3 describes the ex-

perimental methodology used for performing perceptual evaluation.

The analysis of the experiment as well as its results are presented in

Section 4. Section 5 concludes the discussion.

2. EVALUATION OF SOURCE SEPARATION SYSTEMS

In order to consistently evaluate and compare the performances of

different SVS algorithms, the use of a common scoring system is

essential. There are many examples where subjective evaluation

has been performed for comparing general audio source separa-

tion systems [10–12]. Many of these methods are geared towards

evaluating source separation in speech-only mixtures and do not

transfer elegantly to SVS evaluation where vocals are mixed with

instrumental accompaniment. Last but not least, listening tests

are time-consuming, have to be carefully planned, and are usually

restricted to a relatively small subset of audio files. To counteract

this issue some objective methods for performance evaluation have

been suggested.

Emiya et al. [7, 8] have suggested objective measures based on

the presence of target spatial distortion (Image to Spatial Distortion

Ratio, ISR), interference (SIR), and artifacts (SAR) in the separated

signals as compared to the clean source signals. The total distortion

in the output signal compared to the source is measured by Signal

to Distortion Ratio (SDR) [13]. SIR and SAR were used to evaluate

the submissions in the MIREX 2014 - SVS task, along with the

normalized version of SDR designated as NSDR [14]. Moderate

correlation, in the range of 0.3 to 0.7, has been reported for these

measures when compared to judgment by human evaluators for

general audio source separation tasks [8, 15], but how they fare in

the context of evaluating separation between vocal and instrumental

components from a song remains unknown.

It is the goal of this paper to provide a better insight into the

performance of these measures in the context of singing voice sep-

aration, and analyze how they compare with the various perceptual

qualities human listeners look for while listening to the separated

audio samples.

3. EXPERIMENT DESIGN

An experiment was designed to determine how well the objective

measures NSDR, SIR and SAR used in the MIREX 2014 competi-

tion for the SVS task [6,14] correlate to perceptual evaluation. Five

to ten second long excerpts from pop music songs were processed

with existing SVS algorithms and subjects were asked to rate them

in a series of listening tasks evaluating factors related to the overall

quality, degree of isolation and intelligibility. Four better perform-

ing algorithms [16–19] from MIREX 2014 were used to process the

excerpts. SIR, SAR, SDR and NSDR measures were calculated for

both the estimated vocal component and the estimated instrumental

component for each of these using the BSS Eval toolkit [8]. For the
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Figure 1: Experiment MUSHRA Interface

purpose of labeling the algorithms have been coded as:

1. II: Ikemiya et al. [16]

2. JL: Jeong and Lee [17]

3. RN: Rao et al. [18]

4. RP: Rafii and Pardo [19]

All the excerpts were processed with the original implementa-

tion (provided by authors) of these algorithms, resulting in the audio

clips containing the estimated vocals and accompaniment. These

processed audio clips, along with the clean audio samples were used

to conduct listening tests where the subjects were asked to judge

the performance of the algorithms. The listening experiment was

conducted as a variation of the ITU-R BS.1543 MUSHRA standard

[20]. While the original MUSHRA standard has been proposed

for use in evaluation of medium impairments in signal quality by

audio codecs, it was modified in the design of anchor audio signals

to better conform to SVS system evaluation. PEASS Listening

Test GUI [8] was modified and used to conduct the listening test.

As shown in Figure 1 the subjects were provided with a graphical

interface on a computer screen which allowed them to listen to the

test audio samples, the target clip, and the original song excerpt.

The test samples comprised of the output produced by the SVS

algorithms along with the a hidden reference (same as target clip)

and artificially degraded anchor signals as described in 3.4. Along

with listening to the audio, slider controls were included in the

interface that allowed the subjects to indicate their rating for each

of the test audio clips. Each subject was required to rate the clips on

a scale of 0 to 100, with equidistant markings providing labels Bad,

Poor, Fair, Good and Excellent going in increasing order.

Two experiments were conducted. In experiment one, the sub-

jects were asked to rate the performance based on the separated

vocal component, while in experiment two, the instrumental com-

ponent was judged. The first required the evaluation to be per-

formed in three separate tasks and the second experiment required

two. The tasks were chosen to emulate specific evaluation criteria

as described in 3.3.

All the tests were conducted in a quiet environment with iden-

tical Dell Optiplex 980 computers and using audio-technica ATH-

M30x professional monitor headphones.

3.1. Test Data

Excerpts varying in length from five to ten seconds were extracted

from a random selection of nine songs from the MedleyDB database

[21]. It was ensured that the selected songs had no cross-talk across

the raw tracks. Of the ten selected songs, five were of pop or

singer/song writer genre and the remaining four belonged to the

rock genre. The test cases generated by mixing the vocals with the

accompaniment with equal loudness (sones), along with the clean

vocal and accompaniment audio signals, were used as baseline au-

dio clips for these excerpts. The subjects were asked to rate five

randomly chosen excerpts which provided good balance between

consistency and statistical significance.

3.2. Subjects

Subjects were gathered from a normal hearing population of grad-

uate and undergraduate students, with ages varying from nineteen

to thirty-six, to participate in the experiment. Out of thirty subjects

who participated, eleven had experience in a music related field and

six were professionally trained in music and/or had studio recording

experience. The others were not trained in music. The number of

male participants was twenty-five, while five were female. Since the

purpose of the experiment is to determine the performance of SVS

algorithms which are expected to have moderate to severe impair-

ments, no pre-experiment screening of the subjects was performed.

3.3. Evaluation Tasks

The listening test was divided into several tasks in order to obtain

consistent perceptual rating across subjects. It was conducted in

two sessions. In the first session (experiment one), which lasted

generally from fifteen to twenty minutes, the subjects were asked to

evaluate the vocal component. This evaluation was separated into

three tasks.

T1.1 Vocal Isolation: The subjects were asked to judge how well-

isolated the vocals were from the accompaniment. They

were instructed to disregard all other factors.

T1.2 Vocal Intelligibility: The subjects were asked to judge how

understandable the lyrics were, disregarding all other factors.

T1.3 Vocal Overall Quality: The subjects were asked to judge

their overall perception of the quality of the algorithms, tak-

ing all impairments into account.

The second session (experiment two) lasted for ten to fifteen

minutes and required the subjects to evaluate the separated instru-

mental component. This session had two tasks.

T2.1 Instrumental Isolation: The subjects were asked to judge

how well-isolated the accompaniment was from the vocals.

They were instructed to disregard all other factors.

T2.2 Instrumental Overall Quality: The subjects were asked to

judge their overall perception of the quality of the algorithms

taking all impairments into account.

Each session was prefaced by a short demonstration video where

the tasks were explained to the subjects. Written instructions for

the tasks were also provided to the subjects for the duration of each

session.

3.4. Anchors

The purpose of the anchors in the experiment is to provide arti-

ficially degraded audio samples which should provide the exper-

iment, along with the hidden reference, some control values to

perform a post-rating subject screening. The anchors are designed

such that depending on the assessment task, the subject will provide

a very low score to the anchor sample. In this experiment we use

two anchors.
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Figure 2: Results from the experiment (A1 and A2 are the two anchors, RF is the reference and the rest are the test algorithms)

A1 Isolation Anchor: The isolation anchor is produced by pass-

ing the original excerpt (mix of vocal and instrumental) to

a 4 KHz low-pass filter, and amplifying the result to match

the original loudness. This anchor helps in validating the

subject’s ratings for the two isolation tasks.

A2 Intelligibility Anchor: The intelligibility anchor is generated

by passing the clean vocal audio to a 500 Hz low-pass filter.

The result is then amplified such that the average Zwicker

Loudness (ISO 532B) [22,23] in sone, for the result, is equal

to the loudness of the original audio sample. This anchor is

useful for determining the validity in the vocal intelligibility

task.

4. ANALYSIS AND RESULTS

4.1. Post Evaluation Screening

The experiment described in Section 3 above involves a subjective

study of human perception. This necessitates that a post evalua-

tion screening be performed where the ratings for the subjects who

may not have understood the task, or who may be outliers in the

group is removed. To remove the ratings for subjects who may not

have understood the task, the ratings which don’t have the hidden

reference marked as hundred are removed. Also it is expected that

for the isolation tasks (T1.1 and T2.1), the isolation anchor A1 will

have the poorest performance and similarly for the intelligibility

task (T1.2), anchor A2 is expected to have the worst score. The

subject ratings which do not conform to this are also removed from

further consideration. On an average three to four subjects’ ratings

were removed for each task. The perception of the overall quality

of the anchors can not be predicted as it is subject dependent, hence

the anchors play no role in the quality assessment tasks (T1.3 and

T2.2).

For each task the Spearman’s Correlation Coefficient (ρ) of the

individual subjective ratings v. the average rating of remaining sub-

jects is found. The distribution of the ρ values for each of the tasks is

modeled as a truncated t-distribution, and the subject ratings which

have ρ values less than the five percent outlier limit on the lower

tail of the distribution are removed for that task [24]. Using this

method, one to three subject ratings were removed from each task.

The parameters for the distribution of the estimated distributions,

their chi-squared statistic from Pearson’s chi-squared goodness of

fit test, and the outlier limits for each task are listed in Table 1.

The lower the value of the chi-squared statistic, the better is the

approximation for the outlier limits. It can be inferred by the mean

and the standard deviations listed in the table that the subjects agree

more with each other in the matters of isolation and intelligibility

than they do for the overall quality assessment. This may suggest

that the perceived annoyance of different artifacts varies between

subjects.

Table 1: Distribution of Spearman’s correlation of subject ratings

and associated outlier limits

Task µ σ χ
2 Outlier Limit

T1.1 Vocal Isolation 0.856 0.050 0.211 0.713

T1.2 Vocal Intelligibility 0.881 0.049 1.206 0.800

T1.3 Vocal Overall 0.637 0.254 4.571 0.209

T2.1 Instrumental Isolation 0.804 0.068 0.925 0.668

T2.2 Instrumental Overall 0.652 0.147 1.265 0.373

4.2. Descriptive Analysis

Exploratory statistical analysis is performed for the results obtained

from the experiment. In Figure 2 the trends for subjective and objec-

tive ratings for all the different test sets are shown. Figures 2a and

2b show the distribution of the subjective ratings according to the

tasks. The objective evaluation metrics for the various algorithms

under test are visualized in Figures 2c and 2d for the estimated

vocals and accompaniment respectively. The whiskers in Figures 2a

and 2b indicate that the variances in the subjective ratings for the

intelligibility (T1.2) and isolation tasks (T1.1, T2.1), are smaller

than for the overall quality tasks (T1.3, T2.2). This is in agreement
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with the inference from Table 1 in Section 4.1.

In Figures 2a and 2b a large variance is seen in some of the

results. This is due to the intra-algorithmic performance differences

across different audio excerpts as well as the subjects using the

MUSHRA scale differently. To ensure that the subject ratings are

concordant with each other and the results are reliable, an inter-rater

reliability test is performed for each task by calculating Krippen-

dorff’s alpha coefficient [25] for the subject ratings of all the clips

processed from the same excerpt. The median values for Krippen-

dorff’s alpha coefficient, along with the maximum and minimum,

are displayed in Figure 3 for each of the tasks. An alpha value of one

means perfect reliability, while alpha of zero indicates the absence

of reliability. The inter-rater reliability is high in the case of the

vocal intelligibility (T1.2) and the two isolation tasks (T1.1, T2.1)

and the inferences derived from them can be considered conclusive.

However, in the case of the overall quality assessment tasks (T1.3,

T2.2) the reliability is not very high and therefore they have a lesser

inferential capability as compared to the other three tasks.
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Figure 3: Per-excerpt statistics of Krippendorff’s alpha for each

task

Since the subjects who participated in the experiment were from

various musical backgrounds, a similar analysis of pairwise ρ values

was performed individually for non-musically trained subjects and

the musically trained ones. The distributions obtained were com-

pared with each other using a two-sample Kolmogorov-Smirnov

test. The test indicated that the two sample distributions may be

originating from identical population distributions and failed to re-

ject the null hypothesis (that the samples are from identical distri-

butions) with a p-value of 0.30.

4.3. Comparison of Objective Measures

In order to compare how well the objective measures generally used

for SVS quality evaluation (compare MIREX 2014) correspond to

the subjective evaluation performed in the experiment, two results

have been compiled. In the first case the objective measures NSDR,

SIR, and SAR for the estimated vocals are correlated with each

subject’s rating of the same excerpt using the Pearson’s Product Mo-

ment Correlation Coefficient. This analysis is performed for each

task of the first experiment. Similarly the corresponding objective

measures for the estimated accompaniment are correlated with the

ratings for tasks of the second experiment. The mean and ninety-

five percent confidence interval for the Pearson’s correlation is listed

in the left half of Table 2. The confidence interval is found using a

non-parametric estimate of the probability distribution function [26]

for the correlation coefficient for each task, and estimating the re-

gion which corresponds to the central ninety-five percent area under

the curve.

The same analysis is repeated with the Spearman’s Rank Corre-

lation Coefficient instead of the Pearson’s Correlation Coefficient.

The results for this analysis are shown in the right half of the ta-

Table 2: Average Pearson’s and Spearman’s correlation

coefficients for objective v. subjective ratings with ninety-five

percent confidence intervals. The instances which show a

significant positive or negative correlation by not having zero

within the confidence interval have been highlighted.

Task
Pearson’s Correlation Coeff. Spearman’s Correlation Coeff.

NSDR SIR SAR NSDR SIR SAR

T1.1 Vocal 0.122 0.567 -0.332 0.409 0.701 0.069

Isolation [-.95,+.97] [-.65,+1.00] [-1.00,+.82] [-.53,+.78] [-.05,+.88] [-.72,+.61]

T1.2 Vocal 0.089 -0.726 0.739 0.270 -0.463 0.816

Intel. [-.83,+.95] [-1.00,-.13] [+.07,+1.00] [-.57,+.67] [-.86,+.09] [+.32,+.93]

T1.3 Vocal 0.119 -0.278 0.370 0.348 0.116 0.589

Overall [-.90,+.96] [-.98,+.94] [-.94,+1.00] [-.55,+.74] [-.71,+.66] [-.38,+.84]

T2.1 Instr. 0.149 0.262 -0.145 0.399 0.469 0.197

Isolation [-.74,+.88] [-.88,+.99] [-.97,+.85] [-.44,+.74] [-.41,+.79] [-.63,+.63]

T2.2 Instr. 0.136 -0.020 0.092 0.384 0.364 0.282

Overall [-.86,+.95] [-.94,+.92] [-.90,+.92] [-.54,+.76] [-.53,+.74] [-.57,+.69]

ble. Pearson’s correlation coefficient provides a measure of linear

dependence of the objective measures being tested against the sub-

jective ratings for the various tasks while Spearman’s correlation

coefficient estimates if the objective measures and the subjective

ratings have a monotonic relationship.

From the highlighted results in Table 2 it can be observed that

SIR and SAR have comparably high correlations (absolute value)

for the vocal intelligibility task (T1.2) which provides evidence that

these measures might be related to perceptual intelligibility. Since

the confidence intervals are large in all the cases, and span from

positive to negative it is not certain if these values are a chance oc-

currence. For NSDR the correlation varies greatly and has average

values near zero for all the tasks. This may indicate that NSDR is

not an important measure for SVS evaluation in a perceptual sense.

None of the objective measures for the remaining tasks (T1.3, T2.x)

show a high correlation. While this in itself is not a conclusive proof

that they may not have a good predictive value for these perceptual

tasks, the evidence does support the likelihood for it to be true to

be high. In order to verify the conclusions drawn here, scatter plots

for each objective measure vs. task ratings were plotted and no

observable dependence was found. These results are in agreement

with Emiya et al. [8], although in their case the evaluation was

performed for source separation in general audio mixtures.

5. CONCLUSION

The purpose of this paper was to evaluate the performance of gen-

eral source separation measures (as employed by MIREX 2014) in

the context of separation of the vocal and instrumental components

from songs. The analysis used human perceptual quality ratings

in terms of isolation, intelligibility, fidelity, etc. and correlated the

these ratings with the state of the art as used in MIREX. While the

SIR and SAR measures provide some indication of the evaluation

capability for vocal isolation and intelligibility perception, the cor-

relation measured was not very high and the confidence intervals

were too large. It is also likely that NSDR may not be perceptually

significant as indicated by its lack of agreement with any of the

perceptual tasks.

It may be concluded from this paper that the current objective

measures may be insufficient for proper evaluation of SVS systems,

and it is recommended that new measures be developed.
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