
Machine Listening Eurorack Module
Christopher Latina

Georgia Tech Center for Music Technology
Atlanta, GA

Email: chris.latina@gatech.edu

Abstract—
This paper discusses and documents the implementation for

a eurorack synthesizer module to extract instantaneous features
from an incoming audio signal. This includes its function
within an improvisational and compositional environment.
Note that the majority of this information was compiled from
various forums, help topics, and internet tutorials within DIY
synth and hacking communities. While many of the details
are technical, others exist as mere anecdotal advise for future
instrument builders who want to make embedded audio appli-
cations. Hopefully the tutorials, software, and documentation
presented will help aid that process. Code, technical and
installation details are documented on at https://github.com/
chrislatina/MachineListening.

I. INTRODUCTION

In the context of computer music, the migration of laptop
techniques to dedicated open-source hardware is a blossom-
ing space for developers. As ARM devices become smaller
and more affordable, porting audio applications to hardware
devices without the need for dedicated DSP chips has become
a feasible option for digital musical instrument makers. This
phenomenon has led to a flourishing community of synthesizer
designers who share and open-source their hardware and
software implementations. This paper documents a hardware
synthesizer utility module (shown in Figure 1) and discusses
current technologies surrounding this community. Specifically,
the tool embeds machine listening techniques to encourage
improvisation and create new mappings for electronic com-
position within the eurorack format. This paper focuses on
development with Raspberry Pi running the Raspian operating
system using open-source hardware and software packages.
Furthermore, it introduces current work in development of a
feature extraction library written in C++. Lastly, I discuss
my experience working with the module within a music
composition context.

II. RESEARCH STATEMENT

Computer music often deals with the fundamental issues
found in software and user interface design. What modes of
interaction facilitate both control and expression? How does
one present a piece of computer music in an engaging and
transparent manner? Robert Rowe notes that many of these
problems arise from an “algorithmic inability to locate salient
structural chunks or describe their function” [20]. Like all soft-
ware development, digital musical instruments improve with

Fig. 1. Machine Listening Eurorack Module

iteration. Early versions of libraries and interfaces are clumsy
and cumbersome. As the composer or designer continues to
work with the tool, feedback directs changes in front end
design and lower level implementation.

Over the past decade, there has been a growing move-
ment towards reclaiming analog technologies in the field of
electronic and computer music, especially with regards to
voltage controlled synthesis. The Doepfer A-100 modular
synthesizer standard [7] (or simply eurorack) has become
a more popular phenomenon, with larger companies like
Roland and Moog picking up on the trend. Hundreds of
small synthesizer companies have developed modules follow-
ing this standard that allow interaction and communication
with each other. The Do It Yourself philosophy behind this
movement has developed from recreating classic circuits of
the past to exposing new techniques, especially those with
embedded digital signal processing algorithms. The eurorack
community is well documented on websites like Modular Grid
(https://www.modulargrid.net), which even features tools to
check power specifications, construct racks, save patches, and
in some cases even synthesize sounds with Web Audio. The

https://github.com/chrislatina/MachineListening.
https://github.com/chrislatina/MachineListening.
https://www.modulargrid.net

Fig. 2. The machine listening module in a performance setting.

eurorack platform is popular with musicians and hobbyists be-
cause it is hands on: instrument builders and performers want
to plug and unplug, turn knobs and use physical controllers.
This haptic and visual feedback provides transparency for
the performer and audience [24]. From personal experience,
members of the audience have told me they were mesmerized
by the blinking LEDs of my synth while performing and could
easily translate the light source to the effect it had on the
generated sound.

Current real-time machine listening techniques live inside
technical albeit high level synthesis languages like Pure Data
[3], and SuperCollider [4]. While many competent program-
mers and musicians can build software instruments or compo-
sitions using them, these techniques often stay within the lap-
top screen. After having composed with these tools, I wanted
to embed and modularized these algorithms into hardware.
Pulling from techniques used in classic synth circuits and
adaptive audio effects, this project explores the mapping of
analysis-based instantaneous features found in Music Informa-
tion Retrieval to analog synthesis parameters. Documentation
of the module development is presented alongside a tutorial
and open-source feature extraction library.

III. MOTIVATION

With this project, I want to promote the use of machine
listening as a real-time improvisational tool as shown in
Figure 2. Machine listening is a set of software and signal
processing techniques dedicated to understanding audio con-

tent, simulating the cognitive and perceptual systems humans
use to process sound. This interdisciplinary field pulls from
psychoacoustics and artificial intelligence. For music, machine
listening applies a cognitive model to a generalized repre-
sentation of music theory [18]. Beyond cognition, however,
machine listening also provides a set of data with which
music can be synthesized, modified, or sonified. While this
tool only focuses on real-time feature extraction, it lays the
groundwork for future development in embedding higher level
representations [20], such as beat tracking, pitch detection,
pitch chroma distribution, and harmonic generation. These can
act as control signals for higher level musical structure and
generation.

Real-time audio feature extraction opens up new avenues
for interactive electronic music, improvisation, and generative
composition. The current state of real-time audio feature ex-
traction allows for significant control of synthesis parameters
for innovative compositions. The generative works of Mark
Fell use computational techniques for algorithmic composi-
tion. Fell’s description and mappings are very transparent.
The text to support his release Head Office Transformation
on EVOL’s ALKU imprint describes an instance of Fell’s
process. He recorded his daughter playing Guitar Hero with
headphones. After analyzing the audio recording of the buttons
and clicks from the video game controller, he extracted the
onset timings and generated a MIDI file. He then triggered
a “lush chord generated using 4 operator FM synthesis” [8].
Although this process is not real-time, it is an example of audio
sonification, representing features of the original audio signal
as a transformed musical piece. His piece is an abstraction of
“the skeleton of the guitar hero performance”, with rhythmic
complexity that breaks the 4/4 grid [8].

Previously, my Signal-Aware Spatial Positioning application
gave control to a user to modulate ambisonic sound field
rotation using onsets and spectral information from the audio
signal itself [12]. Bringing this technique into the analog
modular domain creates an environment where computational
analysis of the audio signal can control analog synthesis or
effects. Since the eurorack format interfaces with control volt-
age, this allows electronic musicians to map instantaneously
extracted features to their instruments, whether vintage or
modern. It also allows for parameters to be easily modulated
with external sensors, microphones, clocks, and low frequency
control signals. This improves the musician’s and composer’s
experience because it allows these techniques to be accessed
without the overhead of manually routing the chain of hard-
ware and software configuration (a microphone or buffer to an
audio interface through SuperCollider or Pure Data, mapping
control rates from feature extraction to OSC or MIDI CC
then back out to a set of VSTs or hardware synths from the
DAW). A plug and play device eliminates the need to rely on
this chain of multiple software programs and facilitates haptic
and interactive composition for live performance with these

techniques. It also removes the need for a laptop on stage.

In small scale modular systems, many algorithmic tech-
niques typically found in computer music have made their way
into controlling analog instruments. Keith Fullerton Whitman
summarizes this phenomenon with his album title “Occlusions;
Real Time Music For Hybrid Digital-Analogue Modular Syn-
thesizer” on Editions Mego [25]. He makes use of digitally
generated voltages influenced by analog manipulation, fed
back for digital processing. These hybrid systems can be
finely tuned but embrace unpredictability and continuously
evolving sound. This hybrid approach mimics that of the early
RCA Mark II Synthesizer found at Columbia University, a
punchcard programmable computer that controls 24 “variable-
frequency oscillators” and “audio-bandlimited random noise
[1]. Because there has been a resurgence in analog and control
voltage-based instruments, such as Roland’s AIRA series and
Moog’s Mother 32 module, this design enables musicians to
easily create analysis-based mappings by simply routing the
modulation sources (eighth inch cables carrying +/-5V signals)
to their existing instrument’s modulation points.

IV. RELATED WORK

Many projects exist in both academia and industry that
contribute to open source embedded musical instruments. In
this section I will highlight a few major contributors and
influences on this project.

Satellite CCRMA is “a platform for building embedded
musical instruments and embedded art installations” [2]. Satel-
lite CCRMA is effectively a disk image of Raspberry Pi’s
operating system, Raspbian optimized for audio programming.
It includes compiled versions of Pure Data extended, Arduino,
Faust, and ChucK amongst other tools. CCRMA also includes
a set of example programs to test and work with. Many
of the examples included example code to make guitar and
synth effects and embedded audio art installations. Information
about the project can be found here https://ccrma.stanford.edu/
∼eberdahl/Satellite/.

Monome’s aleph is a programmable “soundcomputer” with
four audio inputs, four audio outputs, four CV inputs, four
CV outputs, buttons, knobs, an OLED display, and a USB
port for MIDI controllers. This versatile system runs on a
32bit AVR32 microcontroller with DSP handled by a BF533
Blackfin chip [14]. In an interview with Create Digital Music,
Aleph’s developer Ezra Buchla discusses his decision to avoid
embedded Linux for audio to achieve his goals, citing reliabil-
ity and longevity [15]. His instrument encourages computer-
centric processing techniques like filter networks and granular
sample manipulation but without the laptop and hardware
interface configuration. “It feels great to take a single rugged
box to a theater or gallery and just plug the instrument into
this kind of processing.” [15] Embracing open-source, aleph’s

source code can be found on Buchla’s GitHub repository
https://github.com/catfact/aleph.

There are a handful of open-source eurorack projects that
employ a hybrid of analog and virtual (software) synthesis.
Qu-Bit’s Nebulae [19], the open-source project Terminal Te-
dium [22], and Mutable Instrument’s Clouds [9] modules are
implementations based on the idea of controlling eurorack with
readily available ARM processors such as the Raspberry Pi,
Teensy, and Cortex M4 ARM chip respectively. Raspberry Pi,
Arduino and MIDI shield implementations [10] use out-of-
the-box components while Clouds runs firmware directly on
the Cortex M4 ARM chip. The different levels of implemen-
tation appeal to different open-source communities, providing
varying forms of hackability.

A. Hackability

A convenient side effect of open-source is the ability to
hack the instrument. With an audience of generally technically
savvy engineers, Nebulae users have published alternative
software instruments to replace the default Pure Data patches
loaded inside [19]. In the case of Mutable Instrument’s Clouds
module, an alternate firmware exists called Parasites [17]. It
keeps the existing features of the texture synthesizer intact,
but add new effects algorithms including parametric reverber-
ation, a resonator, and a clocked looping delay. The fact that
the instrument is encapsulated but editable creates longevity:
compared with common laptop-MIDI paradigm, the interface
to edit the instrument is decoupled from the instrument itself.
Perry Cook describes this phenomenon, “... the programma-
bility of computer-based musical systems often make them
too easy to configure, redefine, remap, etc. For programmers
and composers, this provides an infinite landscape for experi-
mentation, creativity, writing papers, wasting time, and never
actually completing any art projects or compositions.” [5]

Within the context of music, the synthesis technique known
as the envelope follower transforms the spectral envelope of
an audio signal into a control voltage. Buchla’s 230 Triple
Envelope Follower also generates transient triggers, predating
real time digital onset detection. Gottfried Michael Koening
describes a similar technique. “For voltage control . . . direct
voltage signals are either produced by suitable function gen-
erators or obtained by the demodulation of audio signals.
These signals can then be used to control voltage-dependent
amplifiers, oscillators or filters.” [11]. This use of analyzing the
spectral envelope of an incoming signal is common nowadays
in side-chained compressors or dynamics processors [21] and
in adaptive STFT-based digital effects [23]. In their paper,
“Adaptive Effects based on STFT, Using A Source-Filter
Model”, Verfaille and Depaulle describe adaptive effects as
“time-varying control derived from sound features... modified
by appropriate mapping functions.”

https://ccrma.stanford.edu/~eberdahl/Satellite/
https://ccrma.stanford.edu/~eberdahl/Satellite/
https://github.com/catfact/aleph

Fig. 3. A Raspberry Pi triggering a Moog Werkstatt with onsets detected by
an external audio source

V. METHOD

To accomplish this task, I set out to create a generic platform
for adaptive effects and synthesis that facilitates this musical
improvisation and interaction. Because I create music with
modular synths, I wanted to fluidly integrate this tool into
my system in order to experiment and evaluate the techniques
within a compositional system.

A. Software and Hardware Design

The design makes use of a Raspberry Pi Model B+, multi-
channel ADCs and DACs, and an open-source library for real
time feature extraction. The Raspberry Pi supports General
Purpose Input / Output (hereby referred to as GPIO) pins
which can send and receive analog voltage. These can be used
in conjunction with the open-source WiringPi [16] library to
route analog sensors directly to and from a program. When
using a 12-bit ADC, the input resolution is better than that
of MIDI Control Change’s (CC) 8-bit resolution. Without the
need for an additional Arduino, this method is compact and
ideal for sending and receiving control voltage signals for
modular synthesis.

B. Initial Prototype

The current build underwent a series of design and imple-
mentation iterations. The first prototype was implemented on a
Raspberry Pi Model B with a small USB-C audio interface to
read the incoming audio signal, as shown in Figure 3. This ex-
periment tested the viability of routing feature control signals
to the Pi’s GPIO pins. The initial implementation included a
deployment of a standalone C++ library in conjunction with
kissFFT, Port Audio and WiringPi libraries. In my library, the
FFT class was designed as a wrapper for the kissFFT library.
The SpectralFeatures class simply processes the current audio
block’s magnitude spectrum to extract instantaneous features.

In this prototype, an onset trigger was sent to GPIO pin 4
when the spectral flux crossed a threshold value. This trigger
registered as a 10ms pulse sent using the digitalWrite function
in WiringPi. As a demo, I ran a loop of a drum and bass track
into to audio interface and routed the GPIO pin to trigger the
Trig In on the Moog Werkstatt. The thresholds and inter-onset
interval (a gate time between detections), were hard-coded
however and could not be controlled. Regardless, the trigger
generated monotone bass lines that followed the incoming
drum signal. I instantly reacted, twisting the VCF modulation
knob with the beat to make squelching TB-303 style sounds.

C. Spectral Features

Here I will describe a few of the important features imple-
mented in the SpectralFeature class of my software library.
This library is intended to mimic SuperColliders onsets.kr
[4] and William Brent’s bark object [3], along with simple
first moment instantaneous features. I selected these features
primarily because I had experience using them for controlling
audio effects in the past. As a proof of concept, spectral
centroid, flux, and flatness seemed logical to create transparent
mappings with.

The spectral centroid is a measure of spectral shape. Higher
centroid values correspond to brighter timbre. It measures
the center of gravity of the power spectrum of the STFT.
This feature would be logically mapped to the bandpass filter
modulated by the brightness of the incoming audio signal. [13]

Centroid(n) =

K/2−1∑
k=0

k · |X(k, n)|2

N/2−1∑
k=0

|X(k, n)|2

Spectral flatness measures how tonal or noise-like a signal
is. It is calculated by dividing the magnitude spectrum’s
geometric mean by its arithmetic mean. [13]

Flatness(n) =
exp

(
1
N

∑N−1
n=0 lnx(n)

)
1
N

∑N−1
n=0 x(n)

The spectral flux is defined as the average difference be-
tween consecutive STFT frames. It measures the amount of
change of the spectral shape. Spectral flux is the technique
used to detect onset triggers. The generic equation for spectral
flux is as follows. [13]

Flux(n, β) =

β

√
K/2−1∑
k=0

(|X(k, n)| − |X(k, n− 1)|)β

K/2
Other techniques for detecting onsets exist [6], including

phase deviation and complex domain calculations. I imple-
mented a variation of spectral flux that uses half-wave rectifi-
cation on the difference between each bin of the two spectra.

Fig. 4. Surface mount soldering the Terminal Tedium PCB

|X(k,n)| − |X(k,n− 1)| =

|X(k, n)| − |X(k, n− 1)|, if
|X(k, n)| ≥ |X(k, n− 1)|
0, otherwise

D. Final Implementation

After exploring designs using an MCP3008 8-bit ADC chip
routed to GPIO for I2C communication, I found an open
source eurorack audio codec project for Raspberry Pi by Max
Stadler called Terminal Tedium. His PCB design incorporated
an MCP3208 12 bit analog to digital converter (ADC) for
analog voltage control input and a PCM5102A 32-bit digital
to analog converter (DAC) for high quality audio output. After
learning how to do surface mount soldering, I constructed the
module and began testing I/O (see Figures 4 and 5).

Terminal Tedium’s PCM5102A build contains 4 digital
input triggers, 8 analog inputs, 2 digital outputs, and 2 audio
rate outputs. It also included a Pure Data patch and custom PD
object called ADC2FUDI to parse and test the ADC, making
it easy to interface with Pure Data instruments. My program
does not rely on the Pure Data dependency and interfaces with
the hardware in C++. All input, output and power interface
with the Pi directly through its GPIO pins using the WiringPi
library.

E. Linux Audio Card Configuration

It was necessary to configure the Pi to route audio between a
USB device and the PCM5102A DAC for realtime processing.

Fig. 5. Final PCB Construction

Fig. 6. Doepfer’s A-100 system bus power configuration [7]

Having previously worked on CCRMA’s Satellite build for
audio development on the Raspberry Pi, this version used a
fresh install of Raspbian. It was important to update to linux
version 4.x which implemented an i2s mmap configuration for
routing audio between different audio cards. After installing
PortAudio and WiringPi, blacklisted modules must be removed
from the device blacklist and PCM5102A card must be added
to the set of active modules. I configured the PCM5102A as the
default device and the USB-C audio device as the secondary
audio card, disabling the default 11-bit DAC on the Pi itself.
In the bootscript, I enabled i2c, SPI, i2s and the DAC. These
settings are documented in detail on the GitHub page.

F. Power Specification

Terminal Tedium’s build follows the Doepfer A-100 mod-
ular synthesizer standard, and allowed for the Raspberry Pi
itself to be optionally powered by the module. The Doepfer
power specification [7] calls for +/-12V, +5V and ground
rails. Control voltages in eurorack typically follow the 0–
5V or the +/-5V standard found in Moog synthesizers with
pitch controlled by 1V per octave. For power, I wired up
a power unit using a Pittsburgh Modular bus board with an
IEC cable and 2 A transformer. The eurorack spec allows for
each module to be run from the same power supply and share
a common ground. Although modules communicate through
front-panel- patched 1/8” cables, gate and CV control can be
optionally communicated through the system bus as well, as
described in Figure 6.

G. Enclosure and Front Panel

The front panel and enclosure were constructed by hand in
the GVU Prototype lab at Georgia Tech using mostly scrap
wood. Although CNC machining, lasercutting and waterjet
options are great solutions to constructing instrument enclo-
sures, I opted for drills, saws and screwdrivers. Regardless,
protecting an instruments inner electronics and power is ex-
tremely important during development. It is crucial to protect
loose wires (prevent ground from touching the +12V wire) and
solidify loose breadboard constructions to prevent accidentally
shorting a circuit, frying an IC chip, or blowing a fuse in your
apartment.

VI. SOFTWARE AND HARDWARE MAPPINGS

The mappings in my program make use of the Spec-
tralFeatures and FeatureCommunication classes. These classes
handle extracting features from the audio block’s spectrum
and routing them to the Pi’s GPIO pins respectively. The 8
analog CV inputs take the Doepfer standard +/-5V control
signals to modulate parameters in software. The 6 panel knobs
are attached to potentiometers which attenuate six of the
eight analog inputs. This allows both electronic and haptic
control of functionality like thresholds, volume, and filter
cutoff simultaneously. Since the audio input is mono, one of
the audio channels outputs the dry audio signal. The other
audio output is used to map spectral features to an audio
rate signal, effectively sonifying the selected feature. This
can also be repurposed to send a DC signal which can be
scaled as control voltage. Features can be switched by pushing
the middle tact switch button. Spectral flatness controls the
amplitude of a white noise generator when the feature is
selected. The spectral centroid is mapped to the frequency
of a sinewave oscillator. The current version of the software
contains the following internal modulation mappings.
• Potentiometer Knob 1 controls the inter-onset interval

ranging between 4 and 400 milliseconds.
• Potentiometer Knob 2 controls the onset threshold (spec-

tral flux level) ranging between 0 and 8.0
• Potentiometer Knob 3 controls the maximum FFT bin to

ana- lyze (a high pass filter for feature detection).
• Potentiometer Knob 4 controls the minimum FFT bin to

analyze (a low pass filter for feature detection).
• Potentiometer Knob 5 controls the volume of the feature

audio sonification output.
• Potentiometer Knob 6 controls the volume of the dry

audio throughput.
The digital inputs and top two buttons are currently not

mapped to any functionality. The top digital voltage output
simply sends a +5V trigger that lasts 10ms when an onset is
detected (when the spectral flux exceeds the current threshold).
Another onset will not be detected until after the inter-onset
interval time has passed. The bottom digital output sends the
current spectral feature mapped to a Pulse Width Modulation
(PWM) duty cycle amount. This corresponds to a DC voltage
between 0 volts and 10 volts which can be attenuated and

Fig. 7. Mappings of the current program [7]

used as a low frequency bass voice or, even better, processed
to control CV parameters.

On a separate breadboard, I have constructed a basic two
pole passive low pass filter amplified by a dual inverting op-
amp on a breadboard, which allows the PWM output to be
mapped to the Doepfer 1 volt per octave standard for oscillator
tuning. A simple passive low pass filter can be constructed
with just a resistor and a capacitor routed to ground. Cascading
two of these filters creates a second order low pass filter,
with a steeper -12dB per octave in the stop band. The cutoff
frequency can be approximated with the following equation.

fc =
1

2π ∗
√
R1C1R2C2

Using two 680K resistors, 1uF capacitor and a 2.2uF
capacitor, the cutoff frequency becomes 0.158Hz, effectively a
DC voltage. This is then amplified by a dual inverting op-amp
to account for the voltage loss of the passive circuit. This way,
PWM signals can be sent out through a Raspberry Pi GPIO pin
and converted to DC voltage for CV modulation. The response
of the filter, however was very slow.

Instead of the digital trigger output, I mapped the features
to a DC signal out of the audio output. The feature itself
modulated the amplitude of the DC signal. Although the output
was only 2.5V, the DAC provided a clean signal that was
usable for modulation. This can easily be scaled and even
biased using the positive 5V power rail using a quad op-amp
and a set of resistors as mentioned above to create a +/-5V
modulation signal.

VII. EVALUATION

A. Algorithmic Evaluation

To test the algorithmic accuracy, I ran a test suite in
UnitTest++ that read in an audio file and output the features
for each block. I compared the results to a provided Matlab
implementation as a ground truth [13]. These results can be
seen in Tables I through III. Next, I compared the spectral flux
of a different signal, namely a 2 second loop of the Amen
Break. In Table IV, the top chart is the ground truth equation
with a β value of two. Below is the half wave rectification per
bin, with a β value of 1.

B. Device Evaluation

In the final version of the module, latency was relatively
small. The experiment used a tight snare hit sample as an
impulse played a MIDI track in Ableton Live through the
module. The impulse was split into two lines, one going
directly into the mixer and one directly into the module’s audio
input. The line going into the mixer was panned 100% left. The
output of the detected onset trigger was then routed into the
mixer and panned 100% right. This was recorded and showed
a latency of 23 milliseconds. The audio output had about twice
the latency at 40 milliseconds. With a sample rate of 44100
Hz and a block size of 1024, there are 43 blocks processed
per second. The 43 Hz rate, or 23 millisecond delay comes
from this processing time. Reducing the block size would
improve this latency. When chaining multiple modules, this
latency compounds and quickly becomes more significant.

Voltage measurements were suitably stable. The trigger
outputs registered at 5.02 volts. A 100% PWM duty cycle
output registered at 10.39 V and a 50% PWM duty cycle at
5.17 V. These can easily be attenuated in software. A 0%
PWM duty cycle registered at 8.9 mV. Full scaled DC signals
out of the audio outputs registered at 2.53 V. This could also
be pushed to higher ranges. One error made when constructing
the PCB was ordering 5% tolerance resistors rather than 1%
tolerances. This inherently adds more noise into the system.

Although the PWM filter documented in the methodology
does work, better designs surely exist. One side effect of this
approach is that the passive lowpass filter acts as an integrator,
so there is a time lag when switching voltages (pulse width
modulation). This could be undesirable, unless one is looking
for glissando (integrator) effects. Optimizing the RC filters
and amplification circuits could also improve this side effect.
Since the WiringPi SoftPWM and RPIO.PWM libraries for
any generic GPIO pin only function at a maximum of 100Hz
and 300Hz, the current Terminal Tedium construction is less
suitable. GPIO Pin 18 is specifically dedicated for PWM and
could be explored. Using an active filter, or even better, a
dedicated DAC or LFO chip could achieve cleaner results.
Sending DC voltage out of the DC coupled PCM5012A was
the best option tested. Amplifying and DC biasing the signal
could allow a higher range of modulation of some modules.

One approach would be to invert the +5V power rail, filter for
any high frequency power noise, and bias the full 10V signal
to achieve the full +/-5V scale.

C. Evaluation of Musicality

Onset triggers could easily be routed to drum or clock
modules and would play in sync with the audio throughput.
The spectral flux onset detection with half wave rectification
per bin subjectively performed best. In conjunction with tuning
the spectral range attenuators (the two middle knobs), I could
easily filter the Amen Break drum loop for the kick pattern or
the snare.

Certain mappings of the module outputs were easier than
others. In my experience, the spectral flatness typically had
greater variation than the spectral centroid, making a more
dynamic feature to map to voltage controlled filters or voltage
controlled amplifiers. Even the white noise generator added
another effect that synced well with the audio through and
rhythm. The spectral centroid however, was more difficult to
map. Because it is simply a measure of the center of gravity
of the spectrum, it often didn’t vary greatly when extracting
features from musical signals. When mapped to the frequency
of a sine wave oscillator, pitch variation often sounded more
random than musical. I generally found the centroid relatively
unusable in my compositions, except when heavily processed
with delay and reverb for effect. Using spectral centroid on
signals like sinewave sweeps, however would output a higher
range, creating a control voltage sweep mimicking that of the
original signal itself. I believe there is more potential, however
for composing highly dynamic input signals specifically for
this module to extract. With more experimental compositions,
especially abrupt and unpredictable music many users create
with modular synths, would make effective inputs for feature
extraction.

VIII. NOVELTY OF WORK

I am unaware of a hybrid analog-digital synthesizer module
that employs machine listening techniques in this manner.
Overall, the technique is effective for generating organic tim-
bral manipulation and rhythmic patterns that break the norm
of quantized rhythm and structures often found in popular
electronic music. The reactive nature of the module is both
controllable and expressive but also allows for unpredictability.
This balance makes it an effective tool for both production
and composition contexts as well as live and improvisatory
situations. Since the tool extracts signal metadata, the output
is as unpredictable as the input signal. Thankfully, it can
easily be fed back into itself for more complex patterns. This
range of predictability creates creates musically interesting
results. The feedback loop created between the machine and
the performer, as well as the audio input and controller output,
allows for engagement. Incorporating the module into my
existing eurorack system has been rewarding and prolific. In
a few of the creative experiments, the sound mappings are
controlled entirely from the feature extraction. In this case, the

TABLE I
SPECTRAL CENTROID EVALUATION

TABLE II
SPECTRAL FLATNESS EVALUATION

TABLE III
SPECTRAL FLUX EVALUATION, WITH β VALUE OF 2

TABLE IV
SPECTRAL FLUX EVALUATION WITH HALF-WAVE RECITIFCATION PER BIN

musical output can be thought of as a real time sonification
of both the incoming signal and the algorithm itself.

A. Documentation of Creative Work
Prior to designing this module, my experience using onset

and feature extraction for composition was limited to effects
processing, specifically with my Signal-Aware Spatial Posi-
tioning app. Later, I began using onsets as triggers, inspired by
Mark Fell’s frenetic rhythmic work. Initial improvisations with
these techniques were performed in the SuperCollider environ-
ment. The recording titled “Nonphysical Generative Synthesis
II” explores mapping detected onset of varying thresholds into
discrete bins. Triggers within each threshold bin are mapped
to a fundamental harmonic, modulated by trackpad movement.
Three envelopes, also modulated by the trackpad apply ranges
spanning from longer drones to staccato rhythmic pointillism.
The envelopes are then applied to a set of oscillators tuned to
multiples of the fundamental. This is then run through a pitch
granulator just for added effect. All excitations of the model
are performed from the onset detection. The system works
especially effectively when forcing air into the microphone
with one’s hands, singing, or simply allowing the audio output
to feed back.

In the analog realm, experimenting with Make Noise’s
Function module led to more mapping ideas. The Func-
tion module is an envelope generator and follower similar
to Buchla’s 230. After routing a simple arpeggio into the
Function, mapped to filtered noise (an 808 hi-hat) and a kick
drum module, improvisations led to a textural and rhythmic
mimicry. This is especially apparent in the last three minutes
of the recording named “Fire”, where the envelope of the
delayed melody modulates the creaking hi-hat module. Sig-
nificant downbeats in the audio track trigger a booming kick
drum sound accentuating the effect. The result is organic and
complex. Playing the threshold attenuators on the Function felt
like constantly attempting to find and relinquish control of the
system.

After completing the module build, mappings became more
consistent as the program functionality solidified. Final mu-
sical experiments became more complex and satisfying once
the module was racked alongside my eurorack system. The
piece “Hear Bit Wry” makes use of the audio throughput,
spectral flatness, and onsets to generate lush rhythmic textures.
The title of the piece, an anagram of Barry White, samples
his piece “I’m Gonna Love You Just A Little More”. While
playing the song through the module, threshold and inter-onset
interval are set to only detect the most salient downbeat on
the intro drum loop. The spectral-flatness-based white noise
generator is attenuated and routing in an FM configuration to
slightly modulate a humming 55Hz oscillator. The first piano
melody is sampled in real-time using the Mutable Instruments
Clouds texture synthesizer. Onsets are run into a quad clock
divider. These are routed to ping LFOs at the clock rate.
The subdivisions of the detected onset and clocked LFOs

modulate the filter type, cutoff frequency, and density of the
granulated sample. One subdivision-triggered LFO is routed
back to modulate the spectral flux threshold in the module.
This allows rhythms to flow through and then be gated on a
rate that depends on the audio input itself. As the song plays,
new rhythms are generated, and the granular sample can easily
be re-triggered to resample. As soon as the song stops, onsets
are no longer detected and the piece ends.

A similar routing was using in a live drumming context
with the robotic instrument, Shimon for a piece called “Dark
Ambient Robotic Ensemble”. Shimon was prepared to play
a timpano, snare, and ride cymbal. A microphone input was
routed to the module and onsets detected. The audio was
processed, filtered, and delayed to add an ambient component
to the performance.

IX. CONCLUSION

The development of this project aimed to document the
facets of embedded audio programming on Linux. This doc-
umentation will hopefully serve as a reference for those
who want to make open source instruments. The GitHub
readme files in the MachineListening and EmbeddedAudio
repositories contain instructions and useful commands for
beginning development. They also document the installation
and configuration settings for the code used in this project.

Overall, platforms like Raspberry Pi are great devices for
building embedded digital music devices. Features like GPIO
in conjunction with open source libraries like WiringPi and
PortAudio enable a developer to interface with external sensors
and perform audio processing tasks. Existing audio applica-
tions like PureData and SuperCollider can also be incorpo-
rated into the program’s architecture. Since GPIO provides
programable I/O, PWM, clock, and power, it works well with
hardware circuits for more complex devices.

In the context of eurorack synthesizers, embedded devices
on the RaspberryPi have proven successful and still have
great potential. Projects like Qu-bit’s Nebulae have dedicated
community of followers and developers. While the latency of
the Raspberry Pi is greater than that of direct microprocessor
firmware development in parallel with a dedicated DSP, but the
operating system allows for easy deployment and hackability.

This specific device is novel in its approach to creating
control signals. The feature extraction library introduces new
algorithms to the eurorack format which can communicate
with the abundance of existing voltage controlled instruments
(both new and old). Musically, the device offers both control
and chaos. It can mimic grid-like rhythms with accuracy when
patched appropriately or create chaotic arhythmic abstractions
of the incoming signal.

Compositionally, this module fits well into the real-time
modular paradigm. Although it must be tuned for each incom-
ing signal, the results are engaging. I will continue exploring
its possibilities while adding new functionality. It has many
applications for live remixing (especially when used with
sampling tools) and parameter feedback-based compositions.
Mapping its outputs to modulate the input parameters such as
spectral flux threshold, inter-onset interval time, and filtering
create a reactive network. While audio feedback is an often
explored technique in composition, signal feedback routing is
a bit more abstract and can be conducive to generating new
musical structures.

A. Future Work

I plan to continue developing the libraries presented. These
developments include audio effects such as reverb and com-
pression, additional statistical moments such as skewness and
kurtosis, as well as higher level musical knowledge. I also
plan to repurpose the interface and develop entirely new
synthesizer programs using PureData and SuperCollider. One
idea is to make use of the HDMI port and deploy my existing
PD patches for video mixing to be controlled by onsets,
features, and the 6 knobs. I would like to make use of
the tact switches to swap out program modes, switching the
software functionality on the fly. Another similar design is to
instantiate a second onset detector for a second trigger voice.
A sort of parameterized mapping function (a programmatic
modulation matrix of sorts), would make it easy to create new
internal mappings. Further work can be done adding control
over smoothing the feature detection parameters and output.
For example, I’d like control over the filter’s α value when
smoothing the spectral centroid and spectral flatness. I’d also
like to encapsulate amplification, attenuation, and inversion
of control voltages in a separate module to allow scaling of
outputs to +/-5V (or anywhere in between). This could be
be especially useful for digitally generated control voltage
signals. Lastly, I’d like to create a nicer front panel with
aluminum and pre-made transparency cards to display the
mappings.

The GitHub repository: http://github.com/chrislatina/
MachineListening

Older tutorials using CCRMA Satellite: http://github.com/
chrislatina/EmbeddedAudio

MP3 versions of improvisations and compositions: http://
idmclassics.net/submodus/MachineListening/

REFERENCES

[1] BABBIT, M. ”An Introduction to the R.C.A. Synthesizer”. The Journal
of Music Theory VIII (1964), 251.

[2] BERDAHL, E., SALAZAR, S., AND BORINS, M. Embedded Networking
and Hardware-Accelerated Graphics with Satellite CCRMA. Proceed-
ings of the International Conference on New Interfaces for Musical
Expression (2013), 325–330.

[3] BRENT, W. A Perceptually Based Onset Detector for Real-Time and
Offline Audio Parsing. Proceedings of the International Computer Music
Conference, University of Huddersfield, UK, August (2011), 284–287.

[4] COLLINS, N. SuperCollider Classes: Onsets. http://doc.sccode.org/
Classes/Onsets.html.

[5] COOK, P. Principles for designing computer music controllers. In
Proceedings of the 2001 Conference on New Interfaces for Musical
Expression (2011), pp. 1–4.

[6] DIXON, S. Simple spectrum-based onset detection. Music Information
Retrieval Evaluation eXchange - MIREX, x (2006), 7–10.

[7] DOEPFER. Technical details a-100. http://www.doepfer.de/a100 man/
a100t e.htm.

[8] FELL, M., AND EVOL. Head Office Transformation, 2010. http://
vivapunani.org/pmwiki/pmwiki.php/Main/HeadOfficeTransformation.

[9] GILLET, O. Mutable instruments: Clouds. http://mutable-instruments.
net/modules/clouds/specifications.

[10] IKENBERRY, A., AND LIM, J. Csound Eurorack Module. CSound
Journal (2013). http://www.csounds.com/journal/issue18/eurorack.html.

[11] KOENIG, G. The use of computer programmes in creating music. La
Revue Musicale (1970), 1–15.

[12] LATINA, C., AND LERCH, A. Signal-Aware Spatial Positioning. 2015.
[13] LERCH, A. An introduction to audio content analysis applications in

signal processing and music informatics. Wiley, Hoboken, NJ, 2012.
[14] MONOME. Aleph, 2016. http://monome.org/aleph/.
[15] MUSIC, C. D. aleph Soundcomputer: Interview

with monome creator Brian Crabtree and Ezra
Buchla, 2013. http://createdigitalmusic.com/2013/10/
aleph-soundcomputer-interview-monome-creator-brian-crabtree-ezra-buchla/.

[16] PI, W. Wiring Pi, 2016. http://wiringpi.com/.
[17] PUECH, M. Parasites, 2016. https://mqtthiqs.github.io/parasites/clouds.

html.
[18] PURWINS, H., HERRERA, P., GRACHTEN, M., HAZAN, A., MARXER,

R., AND SERRA, X. Computational models of music perception and
cognition I: The perceptual and cognitive processing chain. Physics of
Life Reviews 5, 3 (2008), 151–168.

[19] QU-BIT. Nebulae, 2016. http://www.qubitelectronix.com/modules/
nebulae.

[20] ROWE, R. Interactive Music Systems: Machine Listening and Compos-
ing. Computer Music Journal 17, Puckette 1991 (1992), 76.

[21] SETTEL (AUTHOR), Z., AND LIPPE (AUTHOR), C. Real-time musical
applications using FFT-based resynthesis. Collected Work: The human
touch. Pages: 338-343. (AN: 1994-17738). (1994).

[22] STADLER, M. Github: terminal tedium. https://github.com/mxmxmx/
terminal tedium.

[23] VERFAILLE, V., DEPALLE, P., AND WEST, S. S. Adaptive Effects
Based on STFT, Using a Source-Filter Representation. October (2004),
296–301.

[24] WANDERLEY, M. M., AND DEPALLE, P. Gestural control of sound
synthesis. Proceedings of the IEEE 92, 4 (2004), 632–644.

[25] WHITMAN, K. F. DeMEGO 026 / Keith Fullerton Whitman: Occlusions.
http://editionsmego.com/release/DeMEGO-026, June 2012.

* All linked accessed May 1, 2016

http://github.com/chrislatina/MachineListening
http://github.com/chrislatina/MachineListening
http://github.com/chrislatina/EmbeddedAudio
http://github.com/chrislatina/EmbeddedAudio
http://idmclassics.net/submodus/MachineListening/
http://idmclassics.net/submodus/MachineListening/
http://doc.sccode.org/Classes/Onsets.html
http://doc.sccode.org/Classes/Onsets.html
http://www.doepfer.de/a100_man/a100t_e.htm
http://www.doepfer.de/a100_man/a100t_e.htm
http://vivapunani.org/pmwiki/pmwiki.php/Main/HeadOfficeTransformation
http://vivapunani.org/pmwiki/pmwiki.php/Main/HeadOfficeTransformation
http://mutable-instruments.net/modules/clouds/specifications
http://mutable-instruments.net/modules/clouds/specifications
http://www.csounds.com/journal/issue18/eurorack.html
http://monome.org/aleph/
http://createdigitalmusic.com/2013/10/aleph-soundcomputer-interview-monome-creator-brian-crabtree-ezra-buchla/
http://createdigitalmusic.com/2013/10/aleph-soundcomputer-interview-monome-creator-brian-crabtree-ezra-buchla/
http://wiringpi.com/
https://mqtthiqs.github.io/parasites/clouds.html
https://mqtthiqs.github.io/parasites/clouds.html
http://www.qubitelectronix.com/modules/nebulae
http://www.qubitelectronix.com/modules/nebulae
https://github.com/mxmxmx/terminal_tedium
https://github.com/mxmxmx/terminal_tedium
http://editionsmego.com/release/DeMEGO-026

	Introduction
	Research Statement
	Motivation
	Related Work
	Hackability

	Method
	Software and Hardware Design
	Initial Prototype
	Spectral Features
	Final Implementation
	Linux Audio Card Configuration
	Power Specification
	Enclosure and Front Panel

	Software and Hardware Mappings
	Evaluation
	Algorithmic Evaluation
	Device Evaluation
	Evaluation of Musicality

	Novelty of Work
	Documentation of Creative Work

	Conclusion
	Future Work

	References

