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The design, implementation, and evaluation of a system for automatic audio signal clas-
sification is presented. The signals are classified according to audio type, differentiating
between three speech classes, 13 musical genres, and background noise. A large number of
audio features are evaluated for their suitability in such a classification task, including
MPEG-7 descriptors and several new features. The selection of the features is carried out
systematically with regard to their robustness to noise and bandwidth changes, as well as to
their ability to distinguish a given set of audio types. Direct and hierarchical approaches for
the feature selection and for the classification are evaluated and compared.

0 INTRODUCTION

Over the last decade the exponential growth of the
Internet has made huge amounts of information easily
available to millions of people. Furthermore, advances in
networking technologies, as well as in coding and com-
pression algorithms, have brought about increased band-
width while allowing to make optimal use of it. As a re-
sult, content requiring high levels of bandwidth, such as
video and audio streams or any kind of multimedia docu-
ments, coexists nowadays with the traditional textual and
graphical data. It is not unlikely that, in the near future,
music available on the Internet will overtake the usual
distribution of audio stored on CDs or DVDs. This new
way of producing, sharing, and storing information is
beginning to set unprecedented commercial and legal
paradigms.

However, although the variety and quantity of acces-
sible data are enormous, the way they can be managed and
searched for is frustratingly limited. At this point it is only
possible to search the Internet using textual queries, for
example, using a Web browser. When searching for an
image, a video, or an audio clip, one must rely on the
textual information manually attached at one time to the
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corresponding file. This information is often inaccurate,
and in most cases it consists of only the title and the author
or performer. In many cases there is no such information
at all, the file name being the only hint about its content.
Today it is not possible to perform such natural actions as
searching for an image containing certain objects, a movie
scene featuring a given actor, or organizing a collection of
music files according to their genre or mood, unless this
information has been attached manually to the file before-
hand, which in most cases is a nearly unfeasible task.

These considerations led to the fast growth of the con-
tent analysis (CA) or machine perception research field in
recent years. Its goal is to make computers capable of
automatically extracting metadata, that is, information about
the content from data. In particular, audio content analysis
(ACA), also called computer audition or machine listen-
ing, deals with the extraction of information from sounds.

The term information retrieval (IR) is often used as a
synonym for content analysis, in the sense that content
information is retrieved from the signals. However, to re-
trieve information could also mean to search for a given
entry in a database, and early IR fields include, for ex-
ample, the study of text-based query techniques such as
the ones used to browse information on the Internet. In
order to avoid misunderstandings, the clearly defined term
of content analysis will be used here.

J. Audio Eng. Soc., Vol. 52, No. 7/8, 2004 July/August



PAPERS

One of the possible applications of ACA is classifica-
tion. In a classification system the input signal is analyzed
and a label describing that signal is delivered at the output.
There are many possible criteria upon which the signals
can be separated, such as timbral or melodic content, pitch,
or musical tempo. In the context of multimedia data man-
aging and browsing, a very useful classification is the one
that assigns labels describing the type or category of the
signal, that is, whether the analyzed sound is speech or
noise, whether it belongs to a certain music genre, and so
on. This is the natural way to classify audio signals, and all
common sound databases on the Internet, sound archives,
as well as retail shops are organized this way.

The following possible applications of a category-based
audio classification show why this research field is so
active at present.

* Audio database indexing A stored audio collection is
scanned, assigning an audio class label to each file. This
enables later audio type-based browsing, such as search-
ing a database for specific musical genres.

e Intelligent signal processing Possibilities include au-
tomatic equalization and automatic control of dynamics
processing, such as type-dependent adaptation of loud-
ness in broadcasting.

* Automatic bandwidth allocation A communication
network with audio classification capabilities could dy-
namically allocate bandwidth for the signal being trans-
mitted. More bandwidth would be allocated for music
than for speech transmissions, and no bandwidth at all if
only background noise was detected. This would help
multiplexing systems to work more efficiently.

» Segmentation The signal to be classified can contain a
sequence of different audio classes, such as alternating
speech, music, and background in a soundtrack. Segmen-
tation consists of finding the exact transition moment be-
tween two consecutive audio types. This allows to extract
desired parts from a stream and to discard undesired ones.

o Intelligent audio coding Some audio coding algo-
rithms are designed to work in an optimal way with
speech signals, others with music signals. Audio classi-
fication would allow to switch automatically between
coders, or to select suitable encoder settings, depending
on the audio type at the input.

* Broadcast browsing A classification system with real-
time capabilities could allow to scan a radio or TV dial
in order to find the desired music genre.

1 RELATED WORK

Automatic speech recognition (ASR) is by far the field
that has gathered the most attention of the audio content
analysis community over the last 20 years. ASR systems
can be regarded as a particular case of categorical audio
classification, in which a given spoken fragment (be it a
sentence, a word, or a phoneme) is classified into a pos-
sible textual transcription. ASR has raised great interest
among researchers and investors, because it offers a natu-
ral human-machine interaction. Less interest has been
paid to nonspeech audio classifiers.
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But, as mentioned, this situation has been changing rap-
idly with the advent of audio material available on the
Internet. In recent years many research projects have
started with the goal of developing and evaluating classi-
fiers that take into account not only speech, but also other
sound signals, such as music and environmental noise [1]
[2]. Classifiers can be broadly divided into taxonomic
classifiers and clustering classifiers. Taxonomic classifiers
make use of so-called supervised learning techniques and
allow the implementation of a given category scheme (or
taxonomy) defined beforehand by the user or by the imple-
mentation itself. In contrast, in clustering systems the
separation into categories is up to the algorithm, which
groups the audio samples according to some measure of
similarity, such as timbral similarity. In this section only
taxonomic classifiers will be considered. The interested
reader may consult the references about audio clustering
systems [3]-[6].

A system may also be characterized according to its
real-time capabilities. Real-time classifiers are capable of
updating the classification results at intervals usually in
the range of milliseconds. They are useful in real-time
applications in which the input signal consists of a se-
quence of different types of audio, and which need an
immediate update of the class detection. This is the case,
for example, for automatic dynamic control in broadcast-
ing or automatic bandwidth allocation in a transmission
line. Non-real-time classifiers analyze a longer fragment
of the signal before they provide a classification result.
They are usually more accurate than real-time classifiers,
since long-term characteristics, which can play a key role
in describing a signal, can be measured in this case. The
most common non-real-time application is the automatic
indexing of audio databases.

All automatic classification systems rely on the tech-
niques provided by the science of pattern recognition (PR).
The first step in any PR application is to extract a set of
measures, or features, from the signal to be classified.
Each of these features constitutes one element of the fea-
ture vector that will represent the signal in the so-called
feature space, which will have as many dimensions as
extracted features. In taxonomic systems a set of sample
feature vectors representing each of the audio classes is
used to train a statistical or neural classifier. The classifier
infers some kind of decision rules that will be applied to
assign a class to an incoming unknown signal.

Some systems are capable of extracting the features in
real time. The real-time feature extraction should not be
confused with the aforementioned real-time classification.
A real-time classifier does need the features to be com-
puted in real time, but a non-real-time system could be
able to extract features in real time while being unable to
perform an immediate classification.

One of the first general audio classification systems was
developed by the Muscle Fish company in 1996 [7]. In this
system there are no prespecified classes since the training
is up to the user. Pitch, brightness modeled by the spectral
centroid, spread, and mel frequency cepstral coefficients
(MFCC) are used as features (see Section 4). The system
uses a simple Gaussian (GS) classifier (see Section 6), and
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its main application is similarity retrieval. It has been
tested using short, individual sound segments such as
sound effects and musical instrument notes, which train
very specific classes such as laughter, animals, bells,
crowds, or water.

A system proposed by Scheirer and Slaney [8] uses 13
features such as rolloff, centroid, flux, zero crossings, and
beat features to distinguish between speech and music.
Four different classifiers were evaluated: a GS classifier, a
Gaussian mixture model (GMM), and two variants of the
k nearest neighbor (k-NN) classifier (see Section 6). The
four provided very similar classification performance. A final
classification rate of 98.6% is reported. When using the
system as a three-way classifier to separate music, speech,
and simultaneous speech and music, the rate drops to 65%.

Foote [9] proposed a tree-based quantizer as the classi-
fier, which partitions the feature space into regions with
feature vectors belonging to maximally different classes.
MFCCs are used as features. A three-way classification
between speech, music, and nonvocal sound is imple-
mented using this technique. No specific classification ac-
curacy measures are provided in his paper.

Zhang and Kuo [10], [11] have developed a system that
performs classification in two levels. At the first level,
which they call the coarse level, sound is classified into
speech, music, environmental sound, and silence. At the
second-stage or fine-level classification, sounds are further
divided into finer classes. The work focuses on the clas-
sification of environmental sounds into 10 classes such as
applause, birds, laugh, or rain. At this level an accuracy of
80% is reported.

Pye [12] addresses the classification of audio signals
compressed in MP3 format. Two approaches are compared
with respect to performance and computational cost. In the
first, MFCCs are used as features, which requires a pre-
vious MP3 decompression. The other proposed method
consists of deriving an MFCC-like set of features perform-
ing only a partial decompression, and is called MP3CEP.
GMM and a tree-based vector quantizer such as the one
used by Foote [9] are the evaluated classifiers. Music clas-
sification is performed into the following six classes:
blues, easy listening, classical, opera, dance (techno), and
indie rock. The best classification rate for both MFCC and
MP3CEP was obtained using the GMM classifier. While
MEFCCs performed slightly better (92%) than MP3CEP
(90.9%), in the latter case the computation was more than
five times faster.

The system developed by Casey [13], [14] is intended
for audio classification and retrieval in a generalized way,
that is, the definition and training of all classes is made by
the user. The features are obtained from a compact repre-
sentation of the spectrum using singular value decompo-
sition (SVD). This system uses a hidden Markov model
(HMM)-based classifier and has been adopted by the
MPEG-7 standard.

In Tzanetakis and coworkers [15], [16] music signals
are divided into classical, country, disco, hip-hop, jazz,
rock, blues, reggae, pop, and metal with an accuracy of
61%. Classical music is further divided into four sub-
genres (88% accuracy), and jazz into six subgenres (68%).
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The musical taxonomy is extended by introducing a pre-
vious music/speech discriminator. Speech signals are fur-
ther divided into male speech, female speech, and speech
with noisy background (74%). The system uses 30 differ-
ent timbral, rthythmic, and pitch-related features.

In Lu and Jiang [17] audio is labeled as speech, music,
environment sound, and silence, achieving an accuracy of
96.51%. Classification is performed in two steps. At the
first step it is distinguished between speech and nonspeech
signals using a combination of a k-NN classifier based on
zero crossings, flux, and energy features, and a set of
heuristic rules based on a linear-prediction-related feature
called linear spectral pairs (LSPs). At the second stage
nonspeech is classified into music, environment, or silence
by a set of heuristic rules based on flux, the ratio of noisy
frames, and a periodicity measure based on the autocor-
relation, similar to the harmonic ratio defined in MPEG-7
(see Section 4.2).

One proof of the increasing significance of content
analysis is that there already exists an international stan-
dard defining a set of techniques for analyzing and de-
scribing raw data. Unlike the previously published stan-
dards of the Moving Picture Experts Group (MPEG-1,
MPEG-2, and MPEG-4), the new MPEG-7 standard [14],
[18] does not deal with the compression of signals, but
with its content-based description.

The main goal of MPEG-7 is to standardize feature
extraction for any type of digital data and to define a
language that describes these data in terms of their fea-
tures. In the context of the standard, a feature is called a
low-level descriptor (LLD). In the present work four audio
LLDs have been selected for implementation and evalua-
tion in the classification task.

2 SCOPE AND OVERVIEW

Although many combinations of features and classifiers
have been evaluated in the publications mentioned, little
attention has been paid to the following issues:

* Genre dependency of features Some features are more
suitable than others when classifying into a given set of
subgenres. For instance, a measure of beat strength is more
likely to perform better in separating classical from pop
music than in classifying into chamber music subgenres.

* Problems of dimensionality In PR applications, adding

new features (that is, adding new dimensions in the fea-

ture space) does not necessarily result in a higher clas-
sification accuracy. Reducing the number of features
allows to reduce computational costs while maintaining

a similar classification accuracy. In some cases the clas-

sification rate can even benefit from this reduction in

dimensionality.

Systematic feature selection There is a wide variety of

automatic feature selection algorithms in the PR litera-

ture that have not yet been applied in the context of
audio classification.

* Inappropriate taxonomies Many previously proposed
musical taxonomies are too simple or musicologically
inconsistent.
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In this work the preceding issues have been investigated
and applied in the design and implementation of a proto-
type application for audio signal classification. A common
approach in audio classification is to use all features in a
single-stage classification, in which the audio class is de-
cided directly out of all possible final classes (flat or direct
approach). However, the genre dependency of the features
suggests a hierarchical classification scheme in which, at
each step of the classification, only the features that are
most appropriate to distinguish between the corresponding
subclasses are used (hierarchical approach). Besides al-
lowing to account for this genre dependency, a hierarchi-
cal system also has several other advantages, such as the
ability to reduce the probability of costly errors and easy
expansion capabilities, which will be addressed in detail in
Section 6. The main motivation of this work was to com-
pare the classification accuracy of both direct and hierar-
chical approaches.

The system presented has been designed to operate on
audio signals stored as audio files. Furthermore, the files
are supposed to be homogeneous, that is, to contain only
one type of audio. Hence a constant classification update
is not needed in this case, and long-term sections of the
signals can be analyzed, that is, our system is a non-real-
time classifier. Since a fixed, previously defined audio tax-
onomy is to be implemented, it is also a taxonomic classifier.

The first step in the design of the system consists of
determining the classes into which the signals are going to
be classified. The choice of audio taxonomy used is ad-
dressed in Section 3. In Section 4 a large number of audio
features used for classification purposes are reviewed.
They include well-known physical and perceptual fea-
tures, audio descriptors defined in the MPEG-7 standard,
as well as new features proposed here. All of them have
been implemented and evaluated. The problem of high
dimensionality is addressed by systematically reducing the
number of features by means of a robustness test and a
hierarchical feature subset selection algorithm (Section 5.2).

Finally a density estimation classifier (Gaussian mixture
model) and a nonparametric classifier (k-nearest neigh-
bor), both in their direct and hierarchical variants, are thor-
oughly evaluated with respect to classification accuracy
and computational performance (Sections 6 and 7). The
influence of the length of the classification intervals has
also been examined.

In contrast to previous work, the final version of the
present system is fully hierarchical, both in the feature
selection and in the classification itself. A preliminary
version of the system was presented in our previous work
[19]. Similar principles have been applied by Peeters and
Rodet [20] to the problem of musical instrument detection.

3 AUDIO TAXONOMY

Some of the audio taxonomies proposed in related work
may serve well in demonstrating the system capabilities,
but are not likely to be useful in a final user-oriented
application, since they are often incomplete or musicologi-
cally inconsistent. An example of incompleteness is the
absence of classical music in Lambrou et al. [21] or Casey
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[13]. Musicologically inconsistent is, for example, the dis-
tinction between classical and opera or the choice of indie
rock or metal instead of the more general category of rock
in Pye [12] and Tzanetakis and Cook [16], respectively.
Another incoherence is the fact that, at the same classifi-
cation level, some classes are defined according to their
musical genre and others according to their instrumentation,
such as the piano class in Lambrou et al. [21] or the quartet
and piano jazz subgenres in Tzanetakis and Cook [16].

For these reasons a special effort was made to find an
audio taxonomy that would be at the same time:

* Complete enough to allow an acceptable classification
of as much input signal types as possible

* Musicologically consistent to avoid ill-defined classes

» Simple enough to allow class separation by feasible
features.

After studying several possibilities, the taxonomy shown
in Fig. 1 was defined, which contains a total number of
17 classes (three speech classes, 13 music classes, and
one background noise class). At the first level of the
taxonomy, audio is recognized as speech, music, or
background noise. Speech and music signals are then
classified into more specific classes, such as male and
female speech, orchestral and chamber music, rock, pop,
and jazz. It should be noted that the taxonomy was de-
signed following only musicological considerations and
was determined before the features were proposed (that
is, the classification scheme is user-oriented rather than
feature-oriented).

Classical music was divided according to instrumenta-
tion, and nonclassical music according to style. This is not
only because it is a common practice in many market-
related taxonomies, but also because to divide classical
music accurately according to historical periods such as
baroque, romantic, and so on, would require very sophis-
ticated features which are still nonfeasible.

Some examples of genres that are not intended to fit into
this work’s taxonomy are the following: a capella choral
music, wind bands, electronic contemporary classical mu-
sic, nonwestern classical music (such as Indian or Chinese
classical music), traditional and ethnic music, and other
western popular genres such as funk, reggae, ska, country,
and soul. Of course, these genres can constitute the basis
for future expansions of the taxonomy.

50 audio examples were collected for each of the 17
classes, resulting in an 850-file database. The samples
were obtained from CDs, uncompressed MP3 files, and
radio broadcasts, so that the database represented a wide
range of audio quality levels. Each sample consists of a
representative excerpt of around 30 seconds, which seems
an appropriate length both to allow the evaluation of dif-
ferent classification intervals and to contain enough dis-
tinguishing characteristics of the classes.

4 FEATURE EXTRACTION

Virtually all audio features are extracted by breaking the
input signal into a succession of analysis windows or
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frames, each of around 10—40-ms length, and computing
one feature value for each of the windows. One possible
approach is to take the values of all features for a given
analysis window to form the feature vector for the classi-
fication decision, which allows to obtain class assignments
almost in real time, thus obtaining a real-time classifier.

To achieve better classification results, the concept of
texture window has been introduced in previous work
[16]. It allows to extract long-term characteristics of the
signal and to measure the variation in time of each feature,
which very often provides a better description of the signal
than the feature itself. A texture window is a long-term
segment (in the range of seconds) containing a number of
analysis windows. In the texture-based approach only one
feature vector for each texture window is generated. The
features are not directly the values obtained in each analy-
sis window, but statistical measures of the values obtained
for all analysis windows within the current texture win-
dow. In this case real-time classification is not possible,
since at least one whole texture window has to be pro-
cessed to obtain a class decision. As mentioned, this is the
approach used in the present system. In particular, for each
underlying frame-based feature the four following texture-
based subfeatures are computed: mean (M), standard de-
viation (S), mean of the derivative (DM), and standard
deviation of the derivative (DS) over all analysis frames
within a texture window.

Since the analyzed audio files are supposed to contain
only one type of audio, a single class decision is made for
each one, which can be derived following one of two
possible approaches. The first approach, which we will
call single vector mode, consists of taking the whole file
length as the texture window. In this way, each file is
represented by a single feature vector, which in turn is
subjected only once to classification. The other approach,
the texture window mode, consists of defining shorter tex-
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ture windows and making several class decisions along
each file, one for each texture window. At the end of the
file the decisions are averaged to obtain a final class de-
cision. The average computation is weighted by the cer-
tainty of each class decision.

Before proceeding with the feature extraction, the input
signal is downmixed to a mono signal if it has more than
one channel, and normalized so that its maximum absolute
amplitude equals unity.

In the following equations the subindex r indicates the
number of the current frame. In this way x,[n] denotes the
frame in the time domain, where 7 is the time index, and
X,[k] denotes the short-time Fourier transform (STFT) of
that frame, where k is the frequency coefficient or bin
index.

4.1 Timbral Features

The following well-known timbral features have been
implemented and evaluated:

» Zero crossings The zero crossings (zc) feature [8], [16]
counts the number of times that the signal amplitude
changes signs in the time domain during one frame x,. of
length N,

1 N
2C, =5 2, Isign(x,[n]) - sign(x,[n — 1]) (1)
n=1

where the sign function is defined by

) 1, x=0
sign(x) = 1 x<0

For single-voiced signals, zero crossings have been used
in the literature to make a rough estimation of the fun-
damental frequency. For complex signals it is a simple
measure of noisiness.

Audio
Speech Music Background noise
(ba}
Male speech Female speech Speech with Classical Non-classical
(ms) (fs) background
(sb) /
Chamber music Orchestral music Rock Electronic / Pop Jazz / Blues

/ Ga)

String Other chamber Symphenic Orchestra Orchestra” Hard ~ Soft Techno/ Rap/  Pop
ensembles music with with Rock Rock Dance Hip-Hop (pop)
(ocm) {or) choir  soloist (hr) (sr) (tec) (hip)
(orc) {ors)

Chamber music  Solo
with piano  music quartet
(cmp) (sm) (sq)

Fig. 1. Audio taxonomy.
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 Centroid, or gravity center of the spectrum

N/2

2 fIKIX,[A]]
C=—p— 2)

2 XKl

where N is the number of FFT points, X,[k] is the STFT
of frame x,, and f[k] is the frequency at bin k. Centroid
models the sound sharpness. Sharpness is related to the
high-frequency content of the spectrum, since higher
centroid values correspond to spectra skewed to the
range of high frequencies. Due to its effectiveness to
describe spectral shape, centroid measures have frequently
been used in audio classification tasks [7], [8], [16].
Rolloff Another measure of spectral shape which was
first proposed as a feature to distinguish between voiced
and unvoiced speech [18], [16]. Like the centroid, it is
also a measure of spectral shape and yields higher values
for right-skewed spectra. In fact, both features are
strongly correlated. The rolloff is defined as the fre-
quency below which 85% of the accumulated magni-
tudes of the spectrum is concentrated. That is, if K is the
largest bin that fulfills

N/2

K
DX, [k = 0.85 D, [X,[K]] 3)
k=1 k=1

then the rolloff is R, = f[K].

Flux A measure of the spectral rate of change, which is
given by the sum across one analysis window of the
squared difference between the magnitude spectra cor-
responding to successive signal frames,

N/2

F,= D) (XK1 - X, [K])™. )
k=1

Flux has been found to be a suitable feature for the
separation of music from speech, yielding higher values
for music examples [8], [16].

Mel frequency cepstral coefficients MFCCs are a com-
pact representation of the spectrum of an audio signal
taking into account the nonlinear human perception of
pitch, as described by the mel scale. They are one of the
most used features in speech recognition and have re-
cently been proposed to analyze musical signals as well
[9], [16]. A recent study by Logan [22] confirmed that
MEFCCs are appropriate to represent musical signals.
MFCCs are computed by grouping the STFT coeffi-
cients of each frame into a set of 40 coefficients, using
a set of 40 weighting curves that simulate the frequency
perception of the human hearing system. Then the loga-
rithm of the coefficients is taken, and a discrete cosine
transform (DCT) is applied to decorrelate them. Only
the five first coefficients have been taken as features,
which proved to work efficiently [16].

4.2 MPEG-7 Features

There are several LLDs intended for single-voiced,
quasi-periodic sound segments, which have not been
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implemented here since they would produce unreliable
results with general, complex signals. Only MPEG-7 au-
dio descriptors that are suitable for any audio type have
been taken into consideration. The following descriptors
were implemented:

* Audio spectrum centroid (ASC) A perceptually
adapted definition of the centroid, which introduces a
logarithmic frequency scaling centered at 1 kHz,

N/2
> log,(f[k]/1000) P, [k]
— ®)

E P,[K]

where P, is the power spectrum of frame r.

* Audio spectrum spread (ASS) Tt describes how the
spectrum is concentrated around the centroid and is
defined as

ASC, =

N/2

> [log,(f[k]/1000) — ASC,T P, [k]
k=1

ASS, =

N/2
> PJIK]
k=1
(©)

where ASC, is the centroid defined by Eq. (5). Low
spread values indicate that the spectrum is highly con-
centrated near the centroid; high values mean that it is
distributed across a wider range at both sides of the
centroid.

* Audio spectrum flatness (ASF) A measure of the de-
viation of the spectral form from that of a flat spectrum.
Flat spectra correspond to noise or impulse-like signals;
thus high flatness values indicate noisiness. Low flat-
ness values generally indicate the presence of harmonic
components. Instead of calculating one flatness value
for the whole spectrum, a separation in frequency bands
is performed, resulting in one vector of flatness values
per time frame. The flatness of a band b is defined as the
ratio of the geometric and the arithmetic means of the
power spectrum coefficients within that band,

iH[b-il[b]+1 b]
1 i
I1 Pk
k=il[b]
1

ASF, [b] = i ™)

ih[b] = d[b] + 1 k% P,k
where il[b] and ih[b] denote the first and last frequency
bins for that band, respectively. In this work each vector
has been reduced to a scalar by computing the mean
value across the bands for each given frame, thus ob-
taining a scalar feature that describes the overall flatness.
* Harmonic ratio (HR) A measure of the proportion of
harmonic components within the spectrum, defined as the
maximum value of the autocorrelation (AC) of each frame,
HR,= max {R,[r]} @®)
1

=1, N—
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where R,[7] is the autocorrelation of frame r at lag T and
N is the number of samples in each frame.

It should be noted that the standard defines additional
steps concerning the grouping of coefficients which have
been omitted here for the sake of simplicity. For complete,
detailed specifications see [23].

4.2.1 Modifications to MPEG-7 Harmonic Ratio

When implementing the MPEG-7 harmonic ratio, some
inconsistencies were observed in the standard. As can be
seen from Eq. (8), values near the main peak of the auto-
correlation (at T = 0) are not skipped when searching for
the maximum, which results in harmonic ratio values very
close to 1 for virtually all audio classes. This fact is illus-
trated in Fig. 2, where it can be observed that the first peak
of the AC will most likely be the highest. This is especially
the case for complex signals where, although there can be
other peaks denoting periodicities, they are most likely to

0.6

Autocorrelation
<
T

4] 200 400 800 800 1000
Lag {in samples}

Fig. 2. Autocorrelation of a frame.

x 10
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have less amplitude than the peak corresponding to little
lags. For this reason the search indices have been modified
in the present implementation in such a way that the first
peak is ignored. Also, the rightmost search limit of N — 1
has been replaced by K, which is the lag corresponding to
the minimum fundamental frequency expected fq i, (K =
Js!fo.min» Where f; is the sampling frequency). As it will be
shown, this modified version proved to work better in the
classification task.

4.3 Rhythm Features

Just measuring the tempo in beats per minute (bpm) is
not interesting in the context of genre classification, since
different pieces belonging to the same genre can have very
different tempo properties, whereas pieces from different
genres can have the same tempo. For classification pur-
poses it is more interesting to extract information about the
rhythmical structure and beat strength. An example is the
regularity of the beats, which is expected to be higher in
rock and pop examples than in the majority of classical
excerpts, where deviations from the original tempo, such
as ritardandos or rubato sections, are common. Beat
strength also seems to be a valuable feature. For instance,
it is likely to be higher in techno music than in jazz. A beat
histogram is a curve describing beat strength as a function
of a range of tempo values, and allows the extraction of the
properties mentioned. Peaks on the histogram correspond
to the main beat and other subbeats. Several methods have
been proposed for its computation [16], [24]. In this work
a method similar to the one presented by Scheirer [24] has
been used. Details about the implementation can be found
in [25].

The result is a curve describing beat strength as a func-
tion of the bpm values. Fig. 3(a) shows the beat histogram
of a hip-hop excerpt. The high peaks denote a high overall
beat strength. The main peak is at 90 bpm and the second
at 45 bpm, denoting a high rhythmic regularity. In con-
trast, the jazz example in Fig. 3(b) shows a significantly
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Fig. 3. Beat histogram examples. High peaks correspond to high beat strength; peaks separated by integer bpm multiples denote rhythm

regularity. (a) Hip-hop. (b) Jazz.
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lower beat strength, but it is still possible to distinguish the
main peak at 120 bpm. Many classical examples have
irregular beat histograms in which no main peaks and no
clear regularity factors can be detected.

All rhythm features were extracted from the beat histo-
grams as follows:

* Beat strength To obtain an overall measure of beat
strength, the following statistical measures of the histo-
gram have been evaluated: mean, standard deviation,
mean of the derivative, standard deviation of the deriva-
tive, third- and fourth-order central moments (called
skewness and kurtosis, respectively), and entropy.
These measures are computed in the “beat domain” and
should not be confused with the time-based statistical
subfeatures.

* Rhythmic regularity A beat histogram in which the
peaks are spaced periodically denotes high rhythmic
regularity. This can be measured by the normalized au-
tocorrelation function of the beat histogram. It will con-
tain clear peaks for rhythmically regular music ex-
amples, and will be the more linear the weaker the
regularity is, as shown in Fig. 4. To reduce this to a
scalar measure of rhythm regularity, the mean across the
lags of the difference between the autocorrelations and
the linear function depicted in the figure is computed.

It should be noted that although the computation is per-
formed on a frame-by-frame basis, histograms are ob-
tained in long-term intervals given by the texture win-
dows. Hence all of the features related to the beat
histogram are single-valued features to which the time-
domain mean and standard deviation subfeatures are not
applicable.

4.4 Other Features

The features grouped in this last section describe the
signal regarding its dynamic properties, its statistical be-
havior, and its predictability.
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Fig. 4. Illustration of rhythmic regularity feature. Beat histogram
autocorrelation from pop and string quartet and reference linear
function.
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* Root mean square Rms energy of each signal frame,

rms, =

€

e Time envelope Maximum of each frame’s absolute
amplitude.

Low energy rate Percentage of frames within a file that
have an rms energy lower than the mean rms energy
across that file. It should be noted that apart from the
beat-histogram-based features, this is the only feature
that is not computed on a frame-by-frame basis, but on
a texture window basis. Therefore the statistical subfea-
tures are not applicable in this case either.

Loudness The previous dynamic-related features are
based on physical measures such as amplitude or en-
ergy. A better adaptation to the human perception of
sound dynamics is provided by the measurement of
loudness. A basic exponential model of loudness of the
form

L]

L = E (10)
has been used, where E, is the energy of the current
frame. An exponent value of a = 0.23 proved to be
adequate in the case of noise, and is also likely to be
applicable to other broad-band sounds such as music
[26], [27]. This model proved to be highly effective in
spite of its simplicity.

* Central moments The third- and fourth-order central
moments of the time-domain audio signal, that is, its
skewness and its kurtosis, are evaluated as possible au-
dio features.

* Predictability ratio Ratio of the energy of the linearly
predicted signal to the energy of the original signal. A
linear prediction of the 12th order was used.

5 FEATURE SELECTION

In total, 20 frame-based features, plus one texture-
window-based feature (low energy rate) and nine beat-
histogram-based features have been evaluated. Further-
more, the four subfeatures, which are applicable to all
frame-based features, make a total number of 90 dimen-
sions in the feature space. The so-called curse of dimen-
sionality is a well-known phenomenon that appears in
many PR applications. It implies that it is advantageous to
reduce the number of features in order to reduce compu-
tational costs while keeping similar levels of performance,
and in some cases even to improve the classification
accuracy.

In a PR application, a well-designed feature should have
the three following general properties:

e Invariance to irrelevancies A good feature should be
invariant to irrelevant transformations of the input sig-
nal. In an audio context, irrelevancies can include signal
quality with respect to noise and bandwidth, the number
of channels, or the overall amplitude scaling. To ensure
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similar classification rates across a wide range of audio
formats or qualities, a classification system should con-
sider such variations of quality irrelevant.

* Good discriminative power A feature should take simi-
lar values within a given class, but very different values
across classes.

» Uncorrelation to other features Redundant informa-
tion should be avoided in the feature space. Each new
feature should add as much new information about the
object as possible.

Features were selected in a completely systematic way,
consisting of two steps. The first step corresponds to the
criterium of invariance and consists of the test on robust-
ness to irrelevancies explained in the next subsection. The
second step corresponds to the criteria of discriminative
power and uncorrelation and its practical implementation
is the feature subset selection algorithm described in Sec-
tion 5.2.

5.1 Tests on Robustness to Irrelevancies

Two tests were carried out to obtain the features that
were most sensitive to the addition of noise and to band-
width changes. To test the robustness against noise, we
compared a selection of audio samples from the database
with the same examples mixed with white Gaussian noise
of —25 dB rms power. To evaluate the bandwidth robust-
ness, the same samples were subjected to low-pass filter-
ing with a cut-off frequency of 11025 Hz. The 20 features
that were most susceptible in each of the tests were
discarded. Table 1 shows the 10 features that were least
susceptible to noise (10 best features) and the 10 most
susceptible features (10 worst). Table 2 shows the corre-
sponding results of the filtering test. For a more detailed
explanation of the tests, see [19].

The following general conclusions can be drawn from
the results of the noise test:

e The DS subfeatures are especially robust to noisy
changes in the signal.

e The M and DM subfeatures are highly sensitive to noise
in most cases.

Observing the results of the filtering test, we can conclude
the following:

Table 1. Selected results of noise test.
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* MFCCs are highly robust to low-pass filtering (except
for their DM variants).

* The M and DM subfeatures are highly sensitive to low-
pass filtering in most cases.

* The predictability ratio feature is extremely sensitive to
low-pass filtering in all of its four subfeature variants.
The four predictability-related subfeatures belong to the
bottom five of the ranking.

As a result of both noise and filtering tests, a total of 32
features (the ones that appear at least once in both bottom
20 ranking lists) were discarded in this first step.

5.2 Feature Subset Selection

The remaining 58 features were subjected to a fea-
ure selection algorithm that selects a subset of features
containing the highest class discriminating power. A
vectorial sequential feedforward algorithm was used
to search for a feature subset that maximized class
separability [28].

More formally, given a feature set & = {f}}i = 1,..., N},
the problem consists of finding a subset ¥ = {f1, fiz, - - - »
S} with M < N that maximizes a given objective function
J(%). The objective function measures the class separabil-
ity and is given by

|Sgl
J=—" 11
1Sy (I
where Sg is the between-class scatter matrix,
c
Sp= > N~ w(m— )" (12)
k=1
and S,y is the within-class scatter matrix,
c
Sw=2, > - —p)". (13)

k=1 xeoy

Here p, is the mean vector of the N, samples in class w,,
p is the mean vector of all available N samples, and C is
the number of classes.

The sequential feedforward algorithm consists of the
following steps (s being the iteration index):

Table 2. Selected results of bandwidth test.

Best Features* Worst Features®

Best Features* Worst Features®

1. Low energy rate 90. 1st MFCC/DM

2. Beat histogram entropy 89. Audio spectrum centroid/M
3. Root mean square/DS 88. Kurtosis/DM

4. 4th MFCC/DS 87. 5th MFCC/M

5. 5th MFCC/DS 86. Rolloft/DM

6. Root mean square/S 85. Audio spectrum flatness/DM
7. 3rd MFCC/DS 84. Modified harmonic ratio/DM
8. Beat histogram/DS 83. Kurtosis/DS

9. Audio spectrum spread/DS  82. 3rd MFCC/DM
10. Beat histogram/S 81. Kurtosis/S

1. 2nd MFCC/DS 90. Predictability ratio/S

2. 1st MFCC/DS 89. Predictability ratio/M

3. 5th MFCC/DS 88. Predictability ratio/DM

4. 3rd MFCC/DS 87. 5th MFCC/DM

5. 4th MFCC/S 86. Predictability ratio/DS

6. 2nd MFCC/M 85. Kurtosis/DM

7. 4th MFCC/M 84. Loudness/DM

8. 3rd MFCC/M 83. Rolloff/S

9. 5th MFCC/S 82. Audio spectrum flatness/DM
10. Low energy rate 81. Rolloff/DS

* Most robust features.
 Features most susceptible to the addition of white noise.

732

* Most robust features.
¥ Features most susceptible to low-pass filtering.
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1) Start with the empty feature set ¥, = {0}.

2) Out of the features that have not yet been chosen,
select the one feature f* that maximizes the objective func-
tion in combination with the previously selected features,

fF=argmax {J(M, Uf)l.

fie XY
3) Update ¥ ,, = Y, U [T,
4) Go to 2).

s> s+ 1.

The algorithm yields a list in which the 58 features are
sorted according to their class-separating ability. It also
ensures that consecutively selected features are as uncor-
related as possible.

The hierarchical classification scheme has a parallel ap-
proach in the context of feature selection. Instead of using
the whole training database to obtain a single list of se-
lected features, a genre-dependent feature selection, or hi-
erarchical feature selection, was used, in which only the
training samples belonging to the current branch in the
classification tree are used to evaluate the separability of
the current two, three, or four classes.

As a result this algorithm is run for each split in the tree,
with a local number of classes ranging from C = 2 to C
= 4. Thus a set of nine feature lists was obtained, one for
each split. Each list shows the features most appropriate
for distinguishing between a given set of music or audio
subgenres. Tables 3-5 show the three best features for
each split. Tables listing the 20 best features at each split
can be found in [25].

The following conclusions can be drawn from the re-
sults of the genre-dependent feature selection:

* While the M,S, and DS subfeatures appear often among
the 20 best features at each split, the DM subfeature
appears only four times, that is, the mean of the deriva-
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tive is not an effective texture-based measure for classifi-
cation. This can be explained by the fact that the mean of
the derivative is very likely to take values close to zero.

* The modified version of the harmonic ratio shows a
better overall performance for classification purposes
than the original MPEG-7 definition. It appears eight
times among the best 20 tables, whereas the original
does not appear at all. It performs particularly well in
separating chamber music and orchestral subgenres.

* The new rhythmic regularity feature has excellent sepa-
rating performance in all splits except for the speech and
the classical splits. In all other splits it belongs to the top
three of the ranking.

* The zero crossings/DS feature is an excellent separator.
It tops the list on four occasions, namely, separation
between classical and nonclassical music and three clas-
sical subseparations.

* Despite its simplicity, the approximation of loudness
used works fairly well as a separator, mostly at the high-
est levels in the hierarchy. This is a motivation for the
future usage of more sophisticated perceptual loudness
definitions as a feature.

e It is a surprising result that beat strength features play a
key role in separating male speech, female speech, and
speech with background. However, this phenomenon
may be explained in that word and phrase onsets in
speech signals produce strong “rhythmic” peaks on the
histogram, while noisy or musical background causes
these amplitude jumps to be smaller.

6 CLASSIFICATION

A k-nearest neighbor (k-NN) classifier and a Gaussian
mixture model (GMM) classifier were evaluated in both
their direct and hierarchical variants. The very intuitive

Table 3. Selected results of feature subset selection.*

Speech/Music/Background

Male/Female/Speech + Background

Classical/Nonclassical

1. 2nd MFCC/S Beat histogram entropy Zero crossing/DS
2. 4th MFCC/DS 4th MFCC/S Loudness/M
3. Rhythmic regularity Loudness/S Rhythmic regularity

* Three best features for each split (part 1).

Table 4. Selected results of feature subset selection.*

Chamber Music/Orchestral Music

Rock/Pop/Jazz

Chamber Subgenres

1. Zero crossings/DS
2. Flux/DS
3. Zero crossings/M

Rhytmic regularity
1st MFCC/M
3rd MFCC/M

Zero crossings/DS
Flux/M
Audio spectrum flatness/M

* Three best features for each split (part 2).

Table 5. Selected results of feature subset selection.*

Orchestral Subgenres

Hard Rock/Soft Rock

Pop Subgenres

1. Zero crossings/DS 1st MFCC/M Rhythmic regularity
2. Flux/DS Rhythmic regularity Ist MFCC/M
3. 2nd MFCC/M 2nd MFCC/M 4th MFCC/S

* Three best features for each split (part 3).
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nearest neighbor rule consists of assigning to the unlabeled
feature vector the label of the training feature vector that is
nearest to it in the feature space. The distance can be
measured using one of several existing metrics, but usually
the Euclidean distance is used, which is given by

d(xy, x,) = (14)

where D is the total number of dimensions (features).
The k-NN rule extends the NN rule by examining the &
nearest training samples to the observed vector. It assigns
the label which is most frequent among these k samples.
The GMM classifier models each class as a linear com-
bination of Gaussian or normal densities, that is, each class
k is represented by the multidimensional conditional density

M
PO = D Wi Pron(®) (15)
m=1

where w, is the event “belongs to class k”, x denotes a
feature vector, w,,, are the weights of the mixture, M is the
total number of densities in the mixture (called compo-
nents), and p,,, is a normal density. The conditional den-
sity p(x|w,) is also called the likelihood of class k with
respect to x. In the particular case M = 1, each class is
modeled by a normal distribution, and the classifier re-
duces to a simple Gaussian (GS) classifier.

In the training phase the values of w,,,, the mean vec-
tors, and the covariance matrices for each component in
each class, which are called the parameters of that class,
are estimated using an algorithm called expectation maxi-
mization [29]. Unlike the k-NN classifier, which needs to
store all the training feature vectors in order to compute
the distances to the input feature vector, the GMM clas-
sifier only needs to store the set of estimated parameters
for each class. When an input vector is to be classified, its
conditional density in each of the classes p(x|w,;) is com-
puted using the estimated parameters. The class for which
the density value is highest is the class chosen for that
vector. This decision rule is called the maximum-
likelihood criterion [29], and the condition for applying it
is that the different classes be equally probable a priori,
which is usually assumed in an audio classification system.

Experiments showed that both classifiers achieved very
similar classification accuracy in the direct as well as the
hierarchical versions. However, the GMM classifier
reached its maximum level of classification accuracy for
about 20 features, compared with close to 40 features
needed by the k-NN to achieve similar rates (see Fig. 5).
This, together with the fact that it reduces the training set
to a set of class parameters, makes the GMM much more
computationally efficient. Therefore it was chosen for the
final implementation of our system.

A three-component GMM was chosen because it
showed a slightly better performance than 1-, 2-, 4-, 5- or
6-component GMMs. At approximately 20 features the
performance ceased to increase, and in some evaluation
experiments it even decreased. For these reasons the num-
ber of features was fixed at 20, that is, at each classifica-
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tion step the system extracts the 20 best features from the
signal, as indicated by the feature selection list corre-
sponding to the current tree split. It should be noted that
the optimal number of features depends closely on the
number of training samples.

6.1 Hierarchical Classification

As mentioned before, a special effort was made in ex-
ploring a hierarchical classification approach which con-
sisted of a tree-based succession of class decisions corre-
sponding to the class taxonomy depicted in Fig. 1. In this
way level 1 of the taxonomy corresponds to a three-class
classification problem. Following the decision of this first
problem, we then switch to one of the three- or two-class
problems at the second level, and so on. This contrasts
with the more common direct approach, which performs a
single decision out of all 17 classes.

An incentive for using the hierarchical method was the ad-
vantages it offers in comparison to the direct approach [30]:

* A hierarchical approach allows to account for the class
dependency of the features. This is exactly the motiva-
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Fig. 5. Selected results for all-class classification experiments. (a)
3-NN classifier. (b) 3-GMM classifier. — direct; --- Hierarchical.
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tion for the genre-dependent feature selection addressed
in the previous section.

o It allows the errors to be more acceptable than in the
case of a direct classification. For example, if a sym-
phonic music sample is wrongly classified as orchestral
music with soloist, it is not so bad as if it were classified
as hip-hop. Dividing the decision into subdecisions
makes the errors concentrate within a given subgenre.

* It closely reflects the underlying audio taxonomy, thus
allowing to evaluate the separability of broad commonly
used genres, such as pop, rock, and jazz, and their suit-
ability for automatic classification purposes.

* It provides the framework for the future design of more
sophisticated genre-dependent features.

* It makes future expansions of the taxonomy easier. If a
new class were added to the direct scheme, the feature
selection algorithm would have to be run again with all
training samples. Furthermore, each class would have to
be retrained according to the new result of the feature
selection. In contrast, in a hierarchical approach only the
genre branch to which a new class is added should be
modified with respect to feature selection and training,
the rest of the models remaining unchanged. In this way
end users would be able to create their own subsplits on
the taxonomy without needing the whole training data-
base for the rest of the genres.

However, the hierarchical method has the following three
major drawbacks:

* The classification rates are multiplicative across levels.
For example, a signal classified correctly as string quar-
tet must have been correctly classified as chamber music
at the previous level, as classical music at the previous
level and as music at the highest level. As it has been
found by the experiments explained in the next section,
this leads to a slightly poorer performance than the di-
rect case. To compensate for the higher possibility of
error, the genre-dependent features must be very well
designed to fit their particular classes.

* It presents more complexity in the implementation.

* It is more computationally expensive, not only because
more classification decisions have to be made for a
given input signal, but also because it is likely that more
features have to be computed than in the direct case.

7 EVALUATION

All the implementations and computations that have
been detailed in the previous sections have been simulated
and tested in a scripting language, which is too slow for a
practical application. Therefore the selected features and
the classifier algorithm (3-GMM) were subsequently
implemented as a prototype classification application in
the C++ language. This application implements the audio
preprocessing, the feature extraction, and the classifica-
tion. This section contains the results of the evaluation of
this final application regarding classification accuracy and
computational performance. Furthermore, the evaluation
experiments of the previous section were simple and based

J. Audio Eng. Soc., Vol. 52, No. 7/8, 2004 July/August

AUDIO SIGNAL CLASSIFICATION

on the all-class classification rate. In the following, the
C++ application was subjected to more detailed and de-
manding evaluation procedures.

To obtain a realistic estimation of performance, the sys-
tem was evaluated using the so-called K-fold cross-
validation method, in which the evaluation is iterated K
times, each time using a randomly selected test set con-
sisting of 100/K% of the samples of the whole database.
Then the performances across the iterations are averaged
to obtain the final estimate of the classification rate R.

In addition it was imposed that each class be repre-
sented by the same number of samples in the test set,
resulting in a stratified crossvalidation. Also, each sample
in the database belongs to only one of the test sets, so that
the union of all test sets corresponds to the whole database.
In other words, it is assured that each example is used exactly
once for testing, the other K — 1 times for training. A value
of K = 10 is a common choice in the evaluation of pattern
recognizers and has also been adopted in this work.

7.1 Evaluation in Single-Vector Mode

We first evaluated the classification accuracy of the
program operating in single-vector mode. As explained in
Section 4, in this mode a single feature vector is computed
for each file. Table 6 shows the percentages of correct
classifications (mean plus standard deviation across the
cross-validation experiments) for the single-vector hierar-
chical approach and for each of the tree splits, as well as
an all-class classification rate, which takes into account all
17 classes. For each split on the tree two different perfor-
mance indications will be given:

* Cumulative performance Percentage of samples of the
test set correctly classified.

* Independent performance Percentage of samples cor-
rectly classified at level i that have been correctly clas-
sified at level i + 1.

The cumulative performance is a more demanding mea-
sure, since it considers the samples that have been incor-
rectly classified elsewhere in the tree, accounting for the
multiplicative nature of the performance of tree-based
classifiers. On the other hand, the independent perfor-

Table 6. Classification performance rates using hierarchical
approach in single-vector mode (means plus standard
deviations across experiments of cross validation).

Cumulative Independent
Split Performance Performance
Speech/music background 94.59 = 1.77 94.59 = 1.77
Male/female/speech
+ background 76.67 £ 8.46 82.31 +£8.63
Classical/Nonclassical 91.08 + 3.68 96.08 +2.02
Chamber music/orchestral
music 74.29 +7.25 81.52 +7.88
Rock/pop/jazz 63.67 £6.17 70.33 £ 8.65
Chamber subgenres 42.50 = 12.08 54.67 £ 13.92
Orchestral subgenres 52.67 £ 10.63 7521 +11.83
Hard rock/soft rock 55.00 = 16.50 79.52 +20.18
Pop subgenres 62.00 = 9.96 76.15 +9.55
All classes 58.71 +2.85
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mance is useful for estimating the capability of the system
in separating a given set of subclasses. For the particular
case of the speech/music/background split, cumulative and
independent performances will be identical. The all-class
performance is implicitly cumulative.

A more detailed information about the classification
performance is given by the so-called confusion matrix
(Fig. 6). Its rows correspond to the actual classes and its
columns to the predicted classes. For example, an entry of
8 in element (1, 2) of the matrix denotes that 8% of the
male speech samples were wrongly classified as female
speech. Correct classifications correspond to the diagonal.
The square margins and the different grades of shading
denote the splits on the hierarchy. The class abbreviations
were introduced in Fig. 1.

The following conclusions can be drawn from the ob-
servation of the confusion matrix:

It is seen clearly that the classification errors tend to
appear within the same class groups or subgroups,
which indicates the ability of the hierarchical approach
to produce acceptable errors.

* Many music samples were classified wrongly as back-
ground. Perhaps the most surprising result of the con-
fusion matrix is the high number of choral music
samples (26%) that have been classified wrongly as
background noise. On the other hand, only 4% of the
background samples were classified as music.

e All the nonclassical music samples misclassified as
chamber music are jazz examples. This is musicologi-
cally consistent, since with regard to instrumentation,
most of the jazz examples contained in the database are
chamber-music-like (trios, quartets, and so on).

* The matrix also shows the difficulty of separating the
rock and pop classes. In particular the most difficult
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Fig. 6. Confusion matrix for hierarchical approach in single-
vector mode. An entry of R in element (i, j) means that R% of test
samples of class i were classified as belonging to class j. Correct
classification rates correspond to the diagonal. For class codes,
see Fig. 1.

736

PAPERS

genres in the hierarchy are soft rock (42% of correct
classifications) and pop (38% correct). It can also be
seen that many soft rock examples were classified as
pop and vice versa (in both cases 20%). This corre-
sponds to the inherently fuzzy nature of these particular
genres, which are understood in many different ways
across individuals. A study by Soltau [31] has confirmed
experimentally the difficulty of human differentiation
between rock and pop.

* The musical genres with the best classification rates are
rap/hip-hop (78%) and techno/dance (70%). This indi-
cates that these classes are very distinct as their specific
examples have similar characteristics within their class
(low within scatter) but dissimilar characteristics when
compared with the rest of the classes (high between
scatter).

The evaluation was repeated for the direct approach.
The results are shown on Table 7. It should be noted that
in this case a single feature list was used which was ob-
tained by running the feature-selection algorithm over the
entire 17-class training database.

7.2 Evaluation in Texture-Window Mode

To evaluate the system operating in the texture-window
mode, a 10-fold cross-validation experiment was carried
out for each of the following seven texture-window sizes:
0.5, 1, 2, 5, 10, 15, and 20 seconds, using the hierarchical
approach. It should always be kept in mind that all the
training and test samples are approximately 30 seconds long.

Fig. 7 shows the classification rate for different texture-
window sizes. The curves indicate the levels of indepen-
dent performance averaged at each of the four levels on
the tree. When compared with the results of the single-
vector mode (Table 8), it can be seen that with the largest
texture-window sizes, the levels of performance reached
by the texture-window mode are similar to those of the
single-vector mode.

It can also be seen that the curves cease to increase at a
window size of 15 seconds. This indicates that observing
longer blocks from the files does not provide much addi-
tional information, assuming the audio content is reason-
ably homogeneous. Under this condition, the system is

Table 7. Classification performance rates using direct approach
in single-vector mode (means plus standard deviations across
experiments of cross validation).

Cumulative Independent

Split Performance Performance
Speech/music/background 96.35+1.70 96.35+1.70
Male/female/speech

+ background 76.67 £9.03 81.00 +9.19
Classical/nonclassical 94.31 £3.48 96.67 +£2.45
Chamber music/orchestral

music 7543 +7.15 78.06 + 6.81
Rock/pop/jazz 65.33 £5.49 71.83 £9.38
Chamber subgenres 50.50 £9.26 63.05 +13.24
Orchestral subgenres 52.00 £ 15.65 75.86 + 18.26
Hard rock/soft rock 59.00 = 19.69 78.91 +21.09
Pop subgenres 58.67 £ 16.87 71.57 £ 16.04
All classes 59.76 £5.23
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expected to maintain similar performance with longer tex-
ture windows.

7.3 Evaluation of Computational Performance

The final application implemented on a Pentium III pro-
cessor at 1000 MHz proved to perform feature extraction
about one-third faster than in real time. As noted in Sec-
tion 1, real-time feature extraction should not be confused
with real-time classification.

8 CONCLUSIONS

As can be seen, the classification rates are very similar
for both direct and hierarchical approaches. However, the
hierarchical approach features the additional advantages
mentioned in Section 6.1, and thus it was selected for the
final implementation of the system.

The classification rates differ substantially across levels
of the tree, showing the varying grades of difficulty in
separating each subset of audio classes. The best indepen-
dent performances were achieved at the highest levels in
the tree. For example 94.59% accuracy was achieved in
differentiating between speech, background, and music,
96.08% in separating classical from nonclassical music, and
81.52% in separating chamber music from orchestral music.

In contrast, the main difficulties arise in the most spe-
cific genres at the lowest levels of the tree, especially in
the case of the four chamber music subgenres, where the
total classification accuracy was 54.67%. The lower levels
of the tree, as well as the high number of classes consid-
ered, make the all-class classification rate drop to 58.71%.
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Fig. 7. Results of texture-window-mode evaluation.

Table 8. Independent performances
averaged across levels for hierarchical
approach in single-vector mode.

Level Single Vector
I 94.59
I 89.20
111 75.92
v 71.39
All classes 58.71
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To achieve higher rates at these levels, more elaborate
genre-specific features are needed.

It is not possible to make a reliable comparison across
systems with respect to classification accuracy, most of all
because of the different numbers of classes considered.
One possibility to benchmark a classification system is to
compare its accuracy with the one that would result if the
classes were chosen randomly. In a system with C classes
the random accuracy would be 100/C%. The system that is
most similar to the one described in this work with respect
to taxonomy complexity and classification method is the
one by Tzanetakis and Cook [16]. They reported an inde-
pendent performance of 61% when classifying into 10
classes (10% random), compared with 59.76% (direct ap-
proach) and 58.71% (hierarchical approach) achieved by
the authors when classifying into 17 classes (5.88% random).

The three-class highest classification level (speech/
music/background) for which accuracies of 96.35% (direct
approach) and 94.59% (hierarchical approach) were ob-
tained can be compared with the systems of Zhang and
Kuo [10] and Lu and Jiang [17], which achieved perfor-
mances of 90% and 96.51%, respectively, with exactly the
same three classes. The differentiation between male
speech, female speech, and speech with background (81%
direct, 82.31% hierarchical) can be compared to the equiva-
lent classification in Tzanetakis and Cook [16] (74%).

The implemented prototype application can constitute
the basis of a practical file-based classifier operating at the
highest levels of the tree. However, the 17-class perfor-
mance is still too low for considering a practical applica-
tion comprising all classes in the taxonomy. To improve
this overall performance, an obvious direction for future
research is the design of sophisticated genre-dependent
features. Possibilities include, for example, a measure of
overall distortion for detecting hard rock, singer detection
to distinguish opera from other classical genres, a mea-
surement of reverberation to discern between chamber
music and symphonic music, more sophisticated loudness
models, or the analysis of higher level musical character-
istics such as harmony or melody.

Other possible directions include the evaluation of other
classification algorithms (such as support vector machines
or hidden Markov models), the exploration of other di-
mensionality reduction methods (such as linear discrimi-
nant analysis or other appropriate transformations of
the feature space), and the implementation of real-time
classification.
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