
 1

Abstract— REPAIR is a web application for audio quality

enhancement targeted towards users uploading mobile phone
video and audio recordings (which are often of poor audio
quality) to the internet. Using REPAIR, users can declip audio,
remove noise from audio, filter audio and normalize audio
loudness using an interface designed for nonexpert users. This
paper formally presents REPAIR, describing the design and
implementation of the application.

Index Terms—Audio Quality Enhancement, Web Application,
Noise Removal, Declipping, Perceptual Equalizer, Mobile Phone
Audio

I. INTRODUCTION
S technology has advanced in the past few decades, the
number of audio and video recordings recorded using

mobile devices has dramatically increased. Uploading services
such as YouTube and SoundCloud ease the process of
publically sharing audio and video files. While this has
generally increased our ability to document, share and spread
experiences, unfortunately, many recordings taken from
mobile phones suffer from poor quality audio. Recording
artifacts such as clipping are often introduced, external noise
sources might conceal the desired audio content, and simple
processing such as loudness normalization and equalization
might substantially improve the audio quality. Mobile phone
audio quality is poor for a variety of reasons: the quality of
mobile phone microphones is generally poor, users tend to
record in loud and noisy environments such as musical
concerts, and correct microphone placement is often
overlooked or impossible (e.g., live concerts). Mobile phone
users need a way to clean up the audio of recordings they take.
 This paper presents REPAIR (Repair and Enhance Phone
Audio on the InteRnet), a web application for audio quality
enhancement. REPAIR includes the following audio
processing modules: declipping, stationary noise removal,
perceptually motivated equalization, and loudness
normalization. The interface is designed for users without
audio expertise. REPAIR is an open source project (see
Section IX).

II. RESEARCH STATEMENT
Our research goal is to create a web application which

allows users to enhance the quality of audio recordings
recorded using mobile phones. By providing users with tools
for declipping, noise removal, equalization, and loudness
normalization, we hope to improve the overall listening
experience for users, especially in scenarios where audio
recordings cannot be rerecorded, such as recordings of live
music concerts.

III. NOVELTY
Current video uploading services do not provide an audio

processing chain to content creators, allowing them to improve
the audio quality of videos before uploading them to the
internet. This project is an attempt to address this apparent
whitespace in the industry. Additionally, the declipping
algorithm is entirely novel and was published separately by
the authors [3].

IV. RELATED WORK

A. Audio Quality Enhancement in Uploading Services and
Devices

Most video uploading services, including YouTube,
normalize the loudness of the audio when a video is uploaded.
Bandcamp requires users to upload lossless audio. Few, if any,
uploading services expose any audio processing to users.

Real-time communication systems often have an audio
processing chain that includes echo suppression and automatic
gain control. However, this is done during recording time and
is usually device specific.

Analogous image/video processing tools are widespread.
Instagram allows users to apply filters to images before
uploading them. YouTube has automatic stabilization tools,
including the ability to detect unstable videos (YouTube goes
as far as alerting users that their video is unstable and
suggesting stabilizing their video). With image processing
being so well integrated in the video uploading workflow, it is
surprising that audio processing has not been given similar
priority.

B. Declipping
Declipping audio is the process of removing the perceptual

effect of clipping from clipped audio. Declipping is a two-step
process: 1) The indices of the signal where clipping occurs
must be detected (clipping detection), and 2) the signal values
at these indices must be replaced with estimates that eliminate
or reduce the perception of clipping without introducing other
artifacts (sample replacement).

REPAIR: A Web Application For Audio Quality
Enhancement

Christopher Laguna, Georgia Institute of Technology

A

 2

1) Clipping Detection

There is a surprisingly small amount of literature on
clipping detection. One possible reason for this is that it is
difficult to formally evaluate a clipping detection algorithm, as
is discussed in the evaluation section.

There are two types of clipping: hard clipping and soft
clipping. In hard clipping, any signal values above the clipping
threshold are set to the clipping level. While easy to detect,
this type of clipping is uncommon and usually occurs in the
digital domain. Soft clipping occurs more often in practice. In
soft clipping, signal values above the clipping threshold
undergo nonlinearities that drive the signal value near the
clipping threshold.

There are two main approaches to detecting clipping:
histogram analysis [7] and time-domain analysis [9].
Histogram-based approaches rely on the fact that audio signals
have predictable amplitude distributions: the distributions are
high towards the mean and near-monotonically decrease
towards both ends. Since hard and soft clipping both drive
high amplitudes down near the clipping level, a clipped signal
will have a probability distribution where amplitudes near the
clipping level have an unnaturally high probability. This
results in two ‘bumps’ in the histogram, one for positive
clipping and one for negative clipping, near the positive and
negative endpoints of the histogram. Histogram-based
approaches work well in practice [7], although if the number
of clipped samples is much smaller than the number of
unclipped samples, it is likely that clipping will not be
detected.

Time-domain approaches rely on the fact that the slope of
the signal near the clipping level is relatively flat and/or that
clipping results in sharp corners at the endpoints of each
clipping interval. Since these approaches analyze the signal
sample by sample, they tend to have fine time resolution.
However, false positives can occur because there exist realistic
signals that don’t contain clipping but do exhibit the
aforementioned characteristic properties of clipping (relatively
sharp increase/decrease in slope and sections of flatness).
Time-domain approaches work best when assumptions about
the signal can be made such as the frequency content of the
signal [9]. Such assumptions should not be made with music,
which can contain any audible frequency.
2) Sample Replacement

Sample replacement is a large area of research that spans
not only declipping but also many other applications including
audio restoration and providing robustness against packet loss
during real-time audio streaming [8]. Much research focuses
on estimating a single ‘burst’ of unknown samples where there
are many known samples on either side of the burst.
Approaches include time-domain interpolation [2,14,22],
frequency-domain interpolation [4,19,16], and sparse
reconstruction [5,6].

The most common time-domain interpolation methods
model the signal as an autoregressive process and use linear
prediction to fill in the burst. Methods differ in how they
guarantee that the prediction will be continuous on both sides

of the burst. Janssen et. al. train a linear predictor on all known
samples, and the estimates are formed by minimizing the
estimation error over all samples in the burst [2]. Esquef et. al.
train linear predictors on either side of the burst, and the
results of forward and backward prediction are crossfaded
over the burst [14]. Etter trains linear predictors on either side
of the burst, but a single estimation is obtained by creating an
objective function that takes both predictors into account [22].
These linear prediction results tend to work well with bursts
that are shorter than 20ms [22]. However, the order of the
autoregressive model must be known and is difficult to
estimate. Training linear predictors of the incorrect order can
result in unstable estimates.
 Frequency-domain approaches create estimates for time-
frequency bins instead of samples. Some approaches estimate
separate autoregressive models for each sub-band of the signal
[4,19]. Lagrange et al. handle signals containing vibrato by
identifying partials on each side of the burst and training linear
predictive models on the partials [16]. Some methods,
including Lukin and Todd’s approach, estimate tonal and
nontonal components of the signal and treat them separately
[19]. Frequency-domain methods are often used to estimate
long bursts, where time-domain methods are insufficient. One
common challenge with using frequency-domain approaches
is that to get a large enough number of time-frequency bins to
do proper interpolation requires a large number of known
samples on either side of the burst. Locations of clipping are
unpredictable, so these methods are difficult to apply to
declipping.

Recent approaches to declipping use concepts from
compressive sampling [5,6]. Clipped samples can be ignored
and the signal can be interpreted as being sampled at non-
uniform intervals. Then, the best sparse representation of a
signal (in an accordingly sparse basis, such as the DCT) can
be obtained using iterative optimization such as orthogonal
matching pursuit [18]. These methods are relatively robust to
different clipping scenarios, but unfortunately are
computationally inefficient, usually having a complexity of
O(n3), where n is the block size.

C. Noise Removal
 Noise removal involves the suppression of noise in a signal.
A signal is often modeled as the addition of a source signal
and noise, where the noise is assumed to be stationary and
uncorrelated to the source. Noise removal can be framed as the
estimation of weights of an optimal linear filter given the
spectral density of the noise. A noise removal algorithm
includes noise estimation, the suppression rule (the method for
estimating filter weights), and usually additional methods for
reducing processing artifacts.
 Noise estimation can be accomplished by first segmenting
the signal into regions containing only noise vs. regions
containing the source, and then averaging the spectra of the
noise segments of the signal [20]. Depending on the
application, segmentation can be done manually or
automatically. For automatic noise segmentation, a classifier
can be used. A simple classifier might classify by signal level
thresholding [20].

 3

 These methods do not work for signals containing no noise-
only segments (this happens when the source is never silent).
If the source has a time-varying frequency, it can be assumed
that at any instant, there exist frequency bins containing only
noise. Then, taking the k-th quantile of the magnitude of a
frequency bin across time will give an estimate of the noise
magnitude at that frequency, where k is chosen depending on
the amount of noise time-frequency bins compared to amount
of source time-frequency bins [20].
 The most common suppression rule minimizes the
minimum mean squared error between the source signal and
the output of the noise removal; this results in the Wiener filter
[12]. It is known that processing a noisy input signal using a
Wiener filter introduces artifacts such as musical noise. In
general, there is a tradeoff between amount of noise
suppression and amount of introduced artifacts. Ephraim and
Malah propose a suppression rule that results in reduced
artifacts [24]. Wolfe and Godsill introduce efficient
alternatives to Ephraim and Malah’s approach based on
maximum a posteriori estimation of the original signal’s
magnitude and phase [11].

D. Equalization
Most non-expert users are more familiar with subjective

timbre descriptors such as ‘warm’ or ‘bright’ than filter
parameters such as cutoff frequencies and q values. Therefore,
researchers have attempted to create interfaces for filters based
on subjective terms [23,25]. Mecklenburg and Loviscach
plotted subjective terms within a two dimensional space, and
users modified the filter by selecting any point on the space
[25]. Each subjective term has a corresponding frequency
response based off of work by Katz [17]. When the user
selects a point on the space, a desired frequency response is
calculated by interpolating between the closest subjective term
points. Cartwright and Prado also create a two dimensional
perceptual space for users to interact with [23]. To construct
this space, Cartwright and Prado first gathered guitar and
drum recordings and created test audio files by filtering these
recordings at various frequencies. Listeners then labeled pairs
of files for similarity. A high dimensional space was derived
from these similarity ratings using multidimensional scaling.
Then, principal component analysis was used to reduce the
dimensionality of the space to two dimensions.

V. SYSTEM DESCRIPTION
 First, the application workflow is presented from the
perspective of the user. Second, the overall architecture of the
system is described. Finally, the algorithms used in each audio
processing unit are described.

A. Workflow
 The user interface is shown in Figure 1. Upon loading the
website, the user is prompted to upload audio by using a file
chooser or dragging a file into the interface. The file is then
normalized to -23 loudness units relative to full scale (LUFS)
and displayed to the user in an interactive waveform viewer.
The system displays two waveforms: the unprocessed input
and the processed output. Before any processing occurs, the

Figure 1: REPAIR user interface.

output is simply a copy of the input. Standard waveform
interactions are supported: audio playback, pause and resume,
playback of selected regions, zooming in and out, and toggling
between the input and output in real time.
 To the right of the waveforms are module buttons for
declipping, noise removal, perceptual equalization, and
loudness normalization. Each module button includes a status
indicator: green indicates an active module that is included
during processing, and red indicates an inactive module that is
not included during processing. The user can click on the
status indicator to toggle the status, or click the module button
button to open a tab with settings for that module below the
waveforms. To avoid loudness bias, loudness normalization
cannot be deactivated.
 Each settings tab includes a text description, a series of
parameters, and an on/off button. The text description gives a
brief overview of the module as well as an explanation for
how to use parameters. The on/off button allows users to
toggle the module between active and inactive states.
 The declipping module contains no parameters.
 The noise removal module prompts the user to select noise-
only regions of audio from the input waveform. When the
audio is loaded, sections of noise are automatically located by
searching for segments of audio with a root mean square value
below a threshold. This threshold is initially set to 10% of the
peak amplitude in the waveform, but the user can modify the
threshold by moving a slider. The user can edit regions by
dragging and dropping the region endpoints, add regions by
manually selecting a region and clicking a button, and delete
regions by double clicking them.
 The perceptual equalizer contains three sliders, each which
provides independent control over a subjective timbral term:
boom, warmth, and brightness. These sliders span values from
-50 to 50. These values do not correspond to any meaningful
unit but are useful for reference.
 The loudness normalization module contains one slider for
modifying the target LUFS. The slider spans 0 LUFS to -50
LUFS. If the target LUFS is high enough to cause clipping, the
user is notified and the level is automatically set to the highest
possible value that does not clip.
 Below the waveform are two buttons: a preview button and
a repair button. The preview button processes a 3.5 second
portion of the audio and plays back the result to the user
immediately after processing. This allows the user to listen to

 4

Figure 2: REPAIR system architecture.

the results without waiting for the entire audio to process. The
section of audio with the largest root mean square value is
chosen to preview. The repair button applies the processing to
the entire audio, and upon completion updates the output
waveform. For both the preview and the repair button, only
active modules are used during audio processing.
 After processing the audio, users can download the output
as a .wav file by clicking on the download button.

B. System Architecture
Figure 2 shows a diagram of the system architecture. The

system design follows a model view controller architecture.
The views are implemented in HTML and CSS, and the
models and controllers are implemented in JavaScript. The
entire application runs in the browser.

The waveform interaction was implemented using
WaveSurfer, a third party library for audio waveform display
and interaction [26]. The façade design pattern (i.e., creating a
simple API for managing a complex subsystem) was used to
facilitate easy synchronization between the input and output
waveforms. A façade class was created containing two
WaveSurfer objects, one for the input and one for the output,
and the façade class functions such as play() and pause()
internally called corresponding WaveSurfer functions.

Along with the modules exposed to the user, a wav encoder
was also implemented (i.e., the audio is wrapped with a wav
header) to allow users to download the output. Additionally,
shared signal processing code was placed into its own model.
The perceptual equalizer was implemented using biquad filters
from the Web Audio API [27], and the Web Evaluation Tool
[28] was used to calculate LUFS loudness (following the
loudness model from the EBU R 128 specification [10]). For

frequency domain processing, the Fast Fourier Transform
library provided by Project Nayuki was used [13].

Audio processing “command functions” were implemented
to interface between the audio processing models and the
controller. Following the command design pattern, each of
these command functions can be black-boxed and treated in
the same manner. Each command function processes audio on
a separate thread (using web workers or Web Audio,
depending on the module) and copies the result into the output
audio buffer. When the user clicks the preview or repair
button, the controller populates a queue of function pointers
containing these command functions ordered as such:
declipping, noise removal, equalization, and loudness
normalization. To process audio, a command function is
dequeued and run. After running each command function, if
the queue is empty, processing is finished; otherwise, the next
command function is dequeued and run. Declipping occurs
first because clipped regions should be fixed before other
processing. Equalization occurs after noise removal because
filtering would effect the estimation of the noise spectrum.
Loudness normalization occurs last because any processing
will effect the calculation of loudness. Inactive modules were
not placed on the stack.

C. Algorithm Description

1) Equalization
 The boom, warmth, and brightness sliders each control the
gain of separate Web Audio biquad filters. The boom slider
controls a low-shelf filter with a cutoff frequency of 60 Hz.
The warmth slider controls a peaking filter with a middle
frequency of 300 Hz. The brightness slider controls a high-
shelf filter with a cutoff frequency of 9000 Hz. These
frequency values were chosen based on an online audio
mixing tutorial by iZotope [15].

2) Noise Removal
 The noise spectrum is estimated by taking the average
spectrum of the noise segments of the signal. Wolfe and
Godsill’s maximum a posteriori suppression rule is used to
calculate the filter weights [11]. The filter is applied in the
frequency domain.
 Measures are taken to reduce artifacts. First, the filter
weights are smoothed across frequency by using a median
filter. This prevents notching effects that could occur if one
weight is much larger or smaller than the surrounding weights.
Second, the filter weights are smoothed over time using a low
pass filter. This reduces musical noise, which is caused when
high frequency weights change rapidly. Third, the a priori
SNR estimate is smoothed over time using a low pass filter.
The a priori SNR estimate is an internal variable used in the
suppression rule calculations that should not vary rapidly.

3) Declipping: Clipping Detection
The clipping detection algorithm is divided into two parts:

clipping level detection and clipping interval detection. In
clipping level detection, positive and negative clipping
thresholds are found by looking for ‘bumps’ in the histogram
of a predefined width. In clipping interval detection, sample-
accurate locations of clipping are found by analyzing the

 5

signal in the time-domain. Sample replacement uses a
frequency-domain approach that focuses on fast processing,
weak requirements on the number of samples on each side of
the burst, and robustness to different types of signals.

a) Clipping Level Detection
 First, the amplitude histogram is computed with 6000
equally spaced bins that span the amplitude range of the
signal. To remove small, noisy fluctuations in the histogram,
the histogram is smoothed by low-pass filtering it with a
forward-backward exponential smoothing filter. Then, an
adaptive threshold is computed by filtering the smoothed
histogram with a forward-backward exponential filter with a
significantly lower cut-off frequency. Note that the first pass
of filtering aims to smooth the histogram, while the second
pass aims to create a very slow-changing threshold. In order to
locate the bumps in the histogram, a novelty function is
computed by subtracting the threshold from the smoothed
histogram. The novelty function will be above zero at the
locations of the bumps. The novelty function might also be
slightly above zero at other locations depending on the input
signal. Then, all intervals of consecutive positive values
occurring within the outermost 10% of the novelty function
are found. These intervals are candidates which might
correspond to the bumps. If the candidate does correspond to a
bump, then it will have a large area compared to the other
candidates. Therefore, a bump is detected when a candidate
has an area that is 3 standard deviations above average. The
clipping level is determined to be the amplitude corresponding
to the innermost bin in the bump. If neither a positive nor a
negative clipping level was found, then the algorithm reports
that the signal contains no clipping. Thus, this method
naturally handles cases where no clipping occurs. Note that
histogram normalization is not required because the method
only relies on relative values.

b) Clipping Interval Detection
 Given the clipping levels, the clipping intervals are found
by analyzing the signal in the time domain. Each local
maximum above the clipping level is assigned a clipping
interval. The clipping intervals are then extended according to
criteria that ensure that the slope during clipping is near zero.
The threshold for the the slope is determined by looking at the
bump width, which corresponds to the amount of amplitude
variation during clipping.

4) Declipping: Sample Replacement
 An overview of the entire replacement process is shown in
Figure 3. To remove clipping, the clipping intervals are first
divided into short intervals and long intervals. The short
intervals are interpolated in the time-domain using cubic
spline interpolation. The signal is then split into a low-
frequency band and a high-frequency band. Samples in the
high-frequency band are replaced by linearly interpolating
time-frequency bin magnitudes. The low-frequency band
remains untouched. Finally, the low-frequency band and the
processed high-frequency band are combined.

Figure 3: Sample replacement block diagram.

a) Replacing Short Bursts
 Short intervals are replaced using cubic spline interpolation.
The cubic spline interpolator is given at most 20 samples on
either side of the clipping interval. If either side of the clipping
interval contains less than 3 samples, no interpolation occurs.

b) Replacing Long Bursts
 The distortion introduced by clipping mostly resides in high
frequencies. Thus, the low frequencies are not processed. The
signal is split into a low frequency band (0-100 Hz) and a high
frequency band (100 Hz-Nyquist), and only the high
frequency band is processed. After processing, the bands are
combined by adding the processed high-frequency band to the
low frequency band. It is important to note that filtering the
signal modifies the locations where clipping occurs: the
clipping intervals get smeared out and could be extended by
up to the length of the filter’s impulse response. With this in
mind, an FIR filter with an impulse response length of 25 is
used. The filter’s cutoff frequency is 100 Hz, and the filter is
designed to be as steep as possible given its order. The filter is
applied forwards and backwards to ensure that the filter is zero
phase. Because the filter is zero phase, the midpoints of the
clipping intervals do not change. Since the support of the
filter’s impulse response spans from sample -25 to 25, the
clipping intervals are extended by 25 samples on either side
after filtering.

To replace long intervals in the high-frequency band, the
signal is first blocked with a block size N = 512 and 75%
overlap. The goal is to estimate the magnitudes and phases for
each block containing any clipped samples. After obtaining
the estimates, the time-domain signal can be reconstructed by
inverse transforming all blocks and overlap-adding them
together.

Replace Short Bursts

Split Signal Into Low And High
Frequency Bands

Estimate Time-Frequency
Bins Of Clipped Blocks

FFT Transform

Inverse FFT Transform

Recombine Bands

Replace Long Bursts

 6

Clipping Detection Results

Algorithm Clipping Level Histogram Block Length Precision Recall F-measure
Histogram 95th Percentile File 0. 937 0. 889 0. 911
Histogram 95th Percentile 3 Seconds 0.937 0.892 0.914
Histogram 90th Percentile File 0.942 0.840 0.881
Histogram 90th Percentile 3 Seconds 0.947 0.880 0.912

Combined 95th Percentile File 0.941 0.910 0.925

Combined 95th Percentile 3 Seconds 0.940 0.908 0.922

Combined 90th Percentile File 0.950 0.902 0.925
Combined 90th Percentile 3 Seconds 0.945 0.862 0.894

Table 1: Clipping detection results.

Because clipping has a negligible perceptual effect on the
phase content of the signal, the phase of the current clipped
block is used as the phase estimate.

The magnitude of a clipped block is estimated by linearly
interpolating between the magnitudes of the two closest
reliable blocks. Reliable blocks are located by searching for
the nearest interval of at least N / 4 consecutive non-clipped
samples.

There are occasions when linear interpolation of magnitudes
causes artifacts. Most notably, overestimation of magnitudes
during blocks containing clipped transients can cause the
transients to sound tonal, resulting in ‘blips’ during high hat
and snare hits. To reduce this artifact, each estimated
magnitude is upper bounded by the magnitude of the
corresponding bin in the clipped block.

VI. EVALUATION
 We focus our evaluation on the declipping algorithm, since
this is the most novel aspect of the project. We also informally
evaluate the end to end system.

A. Clipping Detection

1) Methodology
 Evaluating the detection of soft clipping is problematic
because it is difficult to record soft clipping with
corresponding sample-accurate ground truths of clipping
indices. Existing research either simulates soft clipping in
software [7] or does not include a formal evaluation of their
algorithm [9]. To properly evaluate with soft clipped signals, a
method would be required that is able to record clean audio
data and corresponding soft clipped audio time-aligned and
phase-aligned to near-sample accuracy in order to reliably
annotate clipping interval locations.
 For our evaluation, soft clipping is simulated by digitally
hard clipping a signal (and saving the clipping locations), and
then encoding the clipped signal using a lossy codec. When a
hard clipped signal goes through a lossy encoder, the clipped
sections of the signal are modified, as these segments of audio
are the most difficult to encode (the frequency-domain is least
sparse at sharp edges).
 To evaluate, clipping detection is run on the resulting audio

files and the precision, recall, and f-measure of the clipping
indices are computed. The dataset published by Homburg et
al. is used for evaluation [1]. This dataset contains 1886 10-
second excerpts of songs from 9 musical genres. The audio
files are encoded as MPEG-1 layer 3 files at 44.1 kHz/128 kb.
This dataset is chosen because it covers a wide range of
musical styles.
 The evaluation is run with different amounts of clipping,
different block sizes, and with different versions of the
algorithm. The clipping levels should be chosen such that the
amount of clipping is comparable between audio files.
Clipping based on a percentage of the maximum amplitude
does not normalize for amount of clipping because different
signals have different amounts of dynamic variation. Instead,
the clipping level is chosen based on a percentile of the
amplitude distribution in the signal. This guarantees that the
same number of samples clip in each audio file. Because the
amount of perceptual clipping also depends on the frequency
content of the signal, choosing the clipping level based on
amplitude percentile does still not guarantee equal amounts of
perceptual clipping. Preprocessing such as filtering the input
by the inverse spectral envelope might be worth investigating,
but was considered excessive for this evaluation.
 Running the evaluation with different block sizes allows us
to verify that the system can be used when the clipping level is
time-variant. Comparisons are also conducted between
clipping detection using the clipping interval detection
(combined) vs. only using clipping level detection
(histogram). When only using clipping level detection,
clipping is detected at each sample with an amplitude above
the clipping level.

2) Results
 Results from the clipping detection evaluation are shown in
Table 1. The algorithm performs with an f-measure near 0.91
in most cases.
 In all experiments, precision (~0.94) is higher than recall
(~0.90). One explanation for this is that the clipping level is
chosen to be the innermost bin in the bump. It is possible that
the amplitudes placed in bins on the inner half of the bump
sometimes correspond to clipped regions of the signal and
other times correspond to non-clipped regions of the signal. If
this is the case, then there is an inherent tradeoff between

 7

precision and recall for these regions of the signal. Here,
precision is considered more important than recall because the
goal is to replace all clipped regions of the signal, which can
be done without knowledge of all non-clipped regions of the
signal.
 The following observations can be made by comparing
results of different experiments. Firstly, experiments with
different amounts of clipping have similar precision, recall,
and f-measure. This indicates that the clipping level estimate
is equally reliable regardless of the size of the bumps in the
histogram. Secondly, precision, recall, and f-measure are
similar between experiments using block-level histograms and
experiments using file-level histograms. This indicates that the
clipping detection algorithm can be used on time varying
clipping. Thirdly, recall tends to improve when using clipping
interval detection. This reinforces our claim that time-domain
analysis can help find the accurate boundaries of clipping,
which is especially useful for reducing false positives.
 It is worth mentioning that lossy encoding might slightly
alter the locations of clipping, which could impact the results
of our evaluation.

B. Sample Replacement

1) Methodology
Objectively evaluating sample replacement is also

problematic because the goal is to measure the perceptual
difference between the clean signal and the reconstructed
signal. Here, the evaluation is based off of the standard audio
distortion measurement metric tonal harmonic distortion
(THD), and some declipping listening examples are provided
online [21].

The total harmonic distortion (THD) of a clipped sinusoidal
before and after sample replacement are compared. The
sinusoidal input is soft clipped (using the same method as in
the clipping detection evaluation) at the 90th percentile and
samples are replaced using the ground truth clipping locations.
The signal is 2 seconds long and sampled at 44.1 kHz. The
performance of replacing short intervals (cubic spline
interpolation) and replacing long intervals (frequency
magnitude interpolation) are tested separately. When testing
long interval replacement, the input is also padded with one
second of a non-clipped sinusoidal before and after the clipped
region. Without this padding, there would be nowhere in the
signal where a clean FFT is possible (note that a clipped
sinusoidal would normally be declipped in the time domain,
but here the goal is to evaluate only the frequency domain
interpolation). The padding is removed before measuring the
THD.

2) Results
THD results are shown in Figure 4. Both time domain and

frequency domain methods are shown to improve the signal
THD. The time domain reconstruction THD increases as
frequency increases. This is because the number of samples in
a single period decreases as frequency increases, and therefore
a greater interpolation accuracy is necessary for higher
frequencies to maintain a constant THD. This is an artifact of
sampling; if the experiment is run with a high enough sample

Figure 4: Total harmonic distortion of reconstruction on sinusoidal input.

rate (e.g., 192 kHz), then the time domain reconstruction THD
is constant with respect to frequency, remaining near -70 dB.

The frequency domain reconstruction THD decreases as
frequency increases. This is due to phase differences between
the clipped and the original sinusoidal. In order to verify this,
the original phase of the sinusoidal was used, and the resulting
THD was relatively constant with respect to frequency
(approximately -90 dB).

The frequency domain approach obtains a lower THD than
the time domain approach across frequencies. However, the
frequency domain approach required extra information (a
clean signal before and after clipping) in order to function
properly. This validates the two-stage approach to sample
replacement.

Results for sinusoidals are not necessarily generalizable to
high bandwidth signals. The next section briefly illustrates the
algorithm performance on real world signals.

C. Declipping on Real World Examples
 To illustrate the performance of our algorithm on a real
world signal, the waveform and spectrogram of a clean,
clipped, and declipped speech signal are visualized. Figure 5
shows the signal waveforms. The waveform of the declipped
signal matches the general shape of the clean signal, although
the reconstruction peaks tend to have a lower magnitude than
the clean peaks. Figure 6 shows the signal spectrograms. From
the spectrogram of the clipped signal, the high frequency
distortion caused by clipping is clearly visible. It can be seen
from the reconstruction spectrogram that this distortion is
mostly removed; however, the higher partials of speech are
occasionally missing.

D. System Computation Speed
To evaluate the computational efficiency of the audio

processing, we ran an experiment using a 2012 MacBook Pro
with a 2.9 GHz quad-core processor and Google Chrome. A
16 bit, 30 second stereo audio file sampled at 44.1 kHz was
loaded into the web application. The audio file contained
clipping. All modules were activated. The preview processing
took just under 4 seconds. Processing the entire audio took just
over 32 seconds: declipping took 16 seconds, noise removal
took 16 seconds, and the perceptual equalizer and loudness
normalization both ran in less than one second.

 500 700 1000 2000 3000 5000
Frequency

-120

-100

 -80

 -60

 -40

TH
D

 (d
Bc

)

Clipped
Time Method
Frequency Method

 8

Figure 5: Clean and reconstructed speech signal waveforms.

Figure 6: Clean, clipped, and reconstructed speech signal spectrograms.

VII. DISCUSSION
It is important for audio processing to happen quickly so

that users can receive timely audio feedback about their
parameter adjustments. From the perspective of a user, audio
processing in REPAIR might take too long for a satisfactory
experience; however, the preview button provides some audio
feedback within an acceptable amount of time (under 4
seconds).

Processing time could be reduced by doing audio
processing over a server. Audio processing code could then be
written in an efficient low level programming language such
as C++. Adding a server side to the application could also
greatly reduce the amount of memory used on the client.
However, server-side processing raises privacy concerns for
users (e.g. potential storage of user audio on the server) and
adds complexity to the overall system.

VIII. CONCLUSION
REPAIR can enhance the quality of mobile phone

recordings, which make up a large percentage of audio and
video content on the internet. It is our hope that this project
will inspire video uploading services to include an audio
processing toolchain in their workflows.

IX. DELIVERABLES

Web application: https://cplaguna-audio.github.io/REPAIR/

Github repository: https://github.com/cplaguna-
audio/REPAIR

REFERENCES
[1] H. Homburg, I. Mierswa, B. Möller, K. Morik, and M. Wurst, “A

Benchmark Dataset for Audio Classification and Clustering.,” in
ResearchGate, 2005, pp. 528–531.

[2] A. Janssen, R. Veldhuis, and L. Vries, “Adaptive interpolation of
discrete-time signals that can be modeled as autoregressive processes,”
IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 34,
no. 2, pp. 317–330, Apr. 1986.

[3] C. Laguna and A. Lerch, “An Efficient Algorithm for Clipping
Detection and Declipping Audio,” presented at the Audio Engineering
Society Convention 141, 2016.

[4] L. W. P. Biscainho, P. S. R. Diniz, and P. A. A. Esquef, “ARMA
processes in sub-bands with application to audio restoration,” in The
2001 IEEE International Symposium on Circuits and Systems, 2001.
ISCAS 2001, 2001, vol. 2, pp. 157–160 vol. 2.

[5] A. Adler, V. Emiya, M. G. Jafari, M. Elad, R. Gribonval, and M. D.
Plumbley, “Audio Inpainting,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 20, no. 3, pp. 922–932, Mar. 2012.

[6] B. Defraene, N. Mansour, S. De Hertogh, T. van Waterschoot, M. Diehl,
and M. Moonen, “Declipping of Audio Signals Using Perceptual
Compressed Sensing,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 21, no. 12, pp. 2627–2637, Dec. 2013.

[7] S. Aleinik and Y. Matveev, “Detection of Clipped Fragments in Speech
Signals,” Int. J. Electr. Electron. Sci. Eng, pp. 74–80, 2014.

[8] S. Godsill, P. Rayner, and O. Cappé, “Digital Audio Restoration,” in
Applications of Digital Signal Processing to Audio and Acoustics, M.
Kahrs and K. Brandenburg, Eds. Springer US, 2002, pp. 133–194.

[9] T. E. Riemer, M. S. Weiss, and M. W. Losh, “Discrete clipping
detection by use of a signal matched exponentially weighted
differentiator,” in Southeastcon’90. Proceedings., IEEE, 1990, pp. 245–
248.

[10] “EBU Technical Recommendation R128 -- Loudness Normalisation and
Permitted Maximum Level of Audio Signals.” European Broadcasting
Union, 2010.

[11] P. J. Wolfe and S. J. Godsill, “Efficient Alternatives to the Ephraim and
Malah Suppression Rule for Audio Signal Enhancement,” EURASIP J.
Adv. Signal Process., vol. 2003, no. 10, p. 910167, Dec. 2003.

[12] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary
Time Series, vol. 2. Cambridge: MIT Press, 1949.

[13] Nayuki, “Free small FFT in multiple languages,” 2016. [Online].
Available: https://www.nayuki.io/page/free-small-fft-in-multiple-
languages. [Accessed: 11-Dec-2016].

[14] P. A. Esquef, V. Välimäki, K. Roth, and I. Kauppinen, “Interpolation of
long gaps in audio signals using the warped burg’s method,” in Proc. 6th
Int. Conf. on Digital Audio Effects (DAFx-03), 2003, pp. 8–11.

[15] “iZotope Pro Audio Essentials.” [Online]. Available:
https://pae.izotope.com.

[16] M. Lagrange, S. Marchand, and J.-B. Rault, “Long Interpolation of
Audio Signals Using Linear Prediction in Sinusoidal Modeling,” Journal
of the Audio Engineering Society, vol. 53, pp. 891–905, Oct. 2005.

[17] B. Katz, Mastering Audio: The Art and the Science, 2 edition. New
York: Focal Press, 2007.

[18] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: recursive function approximation with applications to wavelet
decomposition,” in 1993 Conference Record of The Twenty-Seventh
Asilomar Conference on Signals, Systems and Computers, 1993, 1993,
pp. 40–44 vol.1.

0 50 100 150 200
Time

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Am
pl
itu
dl
e

Original
Reconstructed

 9

[19] A. Lukin and J. Todd, “Parametric Interpolation of Gaps in Audio
Signals,” presented at the Audio Engineering Society Convention 125,
2008.

[20] V. Stahl, A. Fischer, and R. Bippus, “Quantile based noise estimation for
spectral subtraction and Wiener filtering,” in 2000 IEEE International
Conference on Acoustics, Speech, and Signal Processing. Proceedings
(Cat. No.00CH37100), 2000, vol. 3, pp. 1875–1878 vol.3.

[21] C. Laguna, “REPAIR,” 2016. [Online]. Available: https://cplaguna-
audio.github.io/REPAIR/. [Accessed: 11-Dec-2016].

[22] W. Etter, “Restoration of a discrete-time signal segment by interpolation
based on the left-sided and right-sided autoregressive parameters,”
Signal Processing, IEEE Transactions on, vol. 44, no. 5, pp. 1124–1135,
1996.

[23] M. B. Cartwright and B. Pardo, “Social-EQ: Crowdsourcing an
Equalization Descriptor Map,” in International Society for Music
Information Retrieval, 2013, pp. 395–400.

[24] Y. Ephraim and D. Malah, “Speech enhancement using a minimum-
mean square error short-time spectral amplitude estimator,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 32, no.
6, pp. 1109–1121, Dec. 1984.

[25] S. Mecklenburg and J. Loviscach, “subjEQt: Controlling an Equalizer
Through Subjective Terms,” in CHI ’06 Extended Abstracts on Human
Factors in Computing Systems, New York, NY, USA, 2006, pp. 1109–
1114.

[26] katspaugh, “wavesurfer.js.” [Online]. Available: https://wavesurfer-
js.org/. [Accessed: 11-Dec-2016].

[27] C. Rogers, “Web Audio API.” [Online]. Available:
https://www.w3.org/TR/webaudio/. [Accessed: 11-Dec-2016].

[28] N. Jillings, D. Moffat, B. De Man, J. D. Reiss, and R. Stables, “Web
Audio Evaluation Tool: A framework for subjective assessment of
audio.” Georgia Institute of Technology, 2016.

