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Abstract— REPAIR is a web application for audio quality 

enhancement targeted towards users uploading mobile phone 
video and audio recordings (which are often of poor audio 
quality) to the internet. Using REPAIR, users can declip audio, 
remove noise from audio, filter audio and normalize audio 
loudness using an interface designed for nonexpert users. This 
paper formally presents REPAIR, describing the design and 
implementation of the application. 
 

Index Terms—Audio Quality Enhancement, Web Application, 
Noise Removal, Declipping, Perceptual Equalizer, Mobile Phone 
Audio 
 

I. INTRODUCTION 
S technology has advanced in the past few decades, the 
number of audio and video recordings recorded using 

mobile devices has dramatically increased. Uploading services 
such as YouTube and SoundCloud ease the process of 
publically sharing audio and video files. While this has 
generally increased our ability to document, share and spread 
experiences, unfortunately, many recordings taken from 
mobile phones suffer from poor quality audio. Recording 
artifacts such as clipping are often introduced, external noise 
sources might conceal the desired audio content, and simple 
processing such as loudness normalization and equalization 
might substantially improve the audio quality. Mobile phone 
audio quality is poor for a variety of reasons: the quality of 
mobile phone microphones is generally poor, users tend to 
record in loud and noisy environments such as musical 
concerts, and correct microphone placement is often 
overlooked or impossible (e.g., live concerts). Mobile phone 
users need a way to clean up the audio of recordings they take. 
 This paper presents REPAIR (Repair and Enhance Phone 
Audio on the InteRnet), a web application for audio quality 
enhancement. REPAIR includes the following audio 
processing modules: declipping, stationary noise removal, 
perceptually motivated equalization, and loudness 
normalization. The interface is designed for users without 
audio expertise. REPAIR is an open source project (see 
Section IX). 

II. RESEARCH STATEMENT 
Our research goal is to create a web application which 

 
 

allows users to enhance the quality of audio recordings 
recorded using mobile phones. By providing users with tools 
for declipping, noise removal, equalization, and loudness 
normalization, we hope to improve the overall listening 
experience for users, especially in scenarios where audio 
recordings cannot be rerecorded, such as recordings of live 
music concerts. 

III. NOVELTY 
Current video uploading services do not provide an audio 

processing chain to content creators, allowing them to improve 
the audio quality of videos before uploading them to the 
internet. This project is an attempt to address this apparent 
whitespace in the industry. Additionally, the declipping 
algorithm is entirely novel and was published separately by 
the authors [3]. 

IV. RELATED WORK 

A. Audio Quality Enhancement in Uploading Services and 
Devices 

Most video uploading services, including YouTube, 
normalize the loudness of the audio when a video is uploaded. 
Bandcamp requires users to upload lossless audio. Few, if any, 
uploading services expose any audio processing to users.  

Real-time communication systems often have an audio 
processing chain that includes echo suppression and automatic 
gain control. However, this is done during recording time and 
is usually device specific. 

Analogous image/video processing tools are widespread. 
Instagram allows users to apply filters to images before 
uploading them. YouTube has automatic stabilization tools, 
including the ability to detect unstable videos (YouTube goes 
as far as alerting users that their video is unstable and 
suggesting stabilizing their video). With image processing 
being so well integrated in the video uploading workflow, it is 
surprising that audio processing has not been given similar 
priority. 

B. Declipping 
Declipping audio is the process of removing the perceptual 

effect of clipping from clipped audio. Declipping is a two-step 
process: 1) The indices of the signal where clipping occurs 
must be detected (clipping detection), and 2) the signal values 
at these indices must be replaced with estimates that eliminate 
or reduce the perception of clipping without introducing other 
artifacts (sample replacement).  
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1) Clipping Detection 

There is a surprisingly small amount of literature on 
clipping detection. One possible reason for this is that it is 
difficult to formally evaluate a clipping detection algorithm, as 
is discussed in the evaluation section.  

There are two types of clipping: hard clipping and soft 
clipping. In hard clipping, any signal values above the clipping 
threshold are set to the clipping level. While easy to detect, 
this type of clipping is uncommon and usually occurs in the 
digital domain. Soft clipping occurs more often in practice. In 
soft clipping, signal values above the clipping threshold 
undergo nonlinearities that drive the signal value near the 
clipping threshold. 

There are two main approaches to detecting clipping: 
histogram analysis [7] and time-domain analysis [9]. 
Histogram-based approaches rely on the fact that audio signals 
have predictable amplitude distributions: the distributions are 
high towards the mean and near-monotonically decrease 
towards both ends. Since hard and soft clipping both drive 
high amplitudes down near the clipping level, a clipped signal 
will have a probability distribution where amplitudes near the 
clipping level have an unnaturally high probability. This 
results in two ‘bumps’ in the histogram, one for positive 
clipping and one for negative clipping, near the positive and 
negative endpoints of the histogram. Histogram-based 
approaches work well in practice [7], although if the number 
of clipped samples is much smaller than the number of 
unclipped samples, it is likely that clipping will not be 
detected. 

Time-domain approaches rely on the fact that the slope of 
the signal near the clipping level is relatively flat and/or that 
clipping results in sharp corners at the endpoints of each 
clipping interval. Since these approaches analyze the signal 
sample by sample, they tend to have fine time resolution. 
However, false positives can occur because there exist realistic 
signals that don’t contain clipping but do exhibit the 
aforementioned characteristic properties of clipping (relatively 
sharp increase/decrease in slope and sections of flatness). 
Time-domain approaches work best when assumptions about 
the signal can be made such as the frequency content of the 
signal [9]. Such assumptions should not be made with music, 
which can contain any audible frequency. 
2) Sample Replacement 

Sample replacement is a large area of research that spans 
not only declipping but also many other applications including 
audio restoration and providing robustness against packet loss 
during real-time audio streaming [8]. Much research focuses 
on estimating a single ‘burst’ of unknown samples where there 
are many known samples on either side of the burst. 
Approaches include time-domain interpolation [2,14,22], 
frequency-domain interpolation [4,19,16], and sparse 
reconstruction [5,6]. 

The most common time-domain interpolation methods 
model the signal as an autoregressive process and use linear 
prediction to fill in the burst. Methods differ in how they 
guarantee that the prediction will be continuous on both sides 

of the burst. Janssen et. al. train a linear predictor on all known 
samples, and the estimates are formed by minimizing the 
estimation error over all samples in the burst [2]. Esquef et. al. 
train linear predictors on either side of the burst, and the 
results of forward and backward prediction are crossfaded 
over the burst [14]. Etter trains linear predictors on either side 
of the burst, but a single estimation is obtained by creating an 
objective function that takes both predictors into account [22]. 
These linear prediction results tend to work well with bursts 
that are shorter than 20ms [22]. However, the order of the 
autoregressive model must be known and is difficult to 
estimate. Training linear predictors of the incorrect order can 
result in unstable estimates.  
 Frequency-domain approaches create estimates for time-
frequency bins instead of samples. Some approaches estimate 
separate autoregressive models for each sub-band of the signal 
[4,19]. Lagrange et al. handle signals containing vibrato by 
identifying partials on each side of the burst and training linear 
predictive models on the partials [16]. Some methods, 
including Lukin and Todd’s approach, estimate tonal and 
nontonal components of the signal and treat them separately 
[19]. Frequency-domain methods are often used to estimate 
long bursts, where time-domain methods are insufficient. One 
common challenge with using frequency-domain approaches 
is that to get a large enough number of time-frequency bins to 
do proper interpolation requires a large number of known 
samples on either side of the burst. Locations of clipping are 
unpredictable, so these methods are difficult to apply to 
declipping.  

Recent approaches to declipping use concepts from 
compressive sampling [5,6]. Clipped samples can be ignored 
and the signal can be interpreted as being sampled at non-
uniform intervals. Then, the best sparse representation of a 
signal (in an accordingly sparse basis, such as the DCT) can 
be obtained using iterative optimization such as orthogonal 
matching pursuit [18]. These methods are relatively robust to 
different clipping scenarios, but unfortunately are 
computationally inefficient, usually having a complexity of 
O(n3), where n is the block size.  

C. Noise Removal 
 Noise removal involves the suppression of noise in a signal. 
A signal is often modeled as the addition of a source signal 
and noise, where the noise is assumed to be stationary and 
uncorrelated to the source. Noise removal can be framed as the 
estimation of weights of an optimal linear filter given the 
spectral density of the noise. A noise removal algorithm 
includes noise estimation, the suppression rule (the method for 
estimating filter weights), and usually additional methods for 
reducing processing artifacts. 
 Noise estimation can be accomplished by first segmenting 
the signal into regions containing only noise vs. regions 
containing the source, and then averaging the spectra of the 
noise segments of the signal [20]. Depending on the 
application, segmentation can be done manually or 
automatically. For automatic noise segmentation, a classifier 
can be used. A simple classifier might classify by signal level 
thresholding [20].  
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 These methods do not work for signals containing no noise-
only segments (this happens when the source is never silent). 
If the source has a time-varying frequency, it can be assumed 
that at any instant, there exist frequency bins containing only 
noise. Then, taking the k-th quantile of the magnitude of a 
frequency bin across time will give an estimate of the noise 
magnitude at that frequency, where k is chosen depending on 
the amount of noise time-frequency bins compared to amount 
of source time-frequency bins [20]. 
 The most common suppression rule minimizes the 
minimum mean squared error between the source signal and 
the output of the noise removal; this results in the Wiener filter 
[12]. It is known that processing a noisy input signal using a 
Wiener filter introduces artifacts such as musical noise. In 
general, there is a tradeoff between amount of noise 
suppression and amount of introduced artifacts. Ephraim and 
Malah propose a suppression rule that results in reduced 
artifacts [24]. Wolfe and Godsill introduce efficient 
alternatives to Ephraim and Malah’s approach based on 
maximum a posteriori estimation of the original signal’s 
magnitude and phase [11]. 

D. Equalization 
Most non-expert users are more familiar with subjective 

timbre descriptors such as ‘warm’ or ‘bright’ than filter 
parameters such as cutoff frequencies and q values. Therefore, 
researchers have attempted to create interfaces for filters based 
on subjective terms [23,25]. Mecklenburg and Loviscach 
plotted subjective terms within a two dimensional space, and 
users modified the filter by selecting any point on the space 
[25]. Each subjective term has a corresponding frequency 
response based off of work by Katz [17]. When the user 
selects a point on the space, a desired frequency response is 
calculated by interpolating between the closest subjective term 
points. Cartwright and Prado also create a two dimensional 
perceptual space for users to interact with [23]. To construct 
this space, Cartwright and Prado first gathered guitar and 
drum recordings and created test audio files by filtering these 
recordings at various frequencies. Listeners then labeled pairs 
of files for similarity. A high dimensional space was derived 
from these similarity ratings using multidimensional scaling. 
Then, principal component analysis was used to reduce the 
dimensionality of the space to two dimensions.  

V. SYSTEM DESCRIPTION 
 First, the application workflow is presented from the 
perspective of the user. Second, the overall architecture of the 
system is described. Finally, the algorithms used in each audio 
processing unit are described. 

A. Workflow 
 The user interface is shown in Figure 1. Upon loading the 
website, the user is prompted to upload audio by using a file 
chooser or dragging a file into the interface. The file is then 
normalized to -23 loudness units relative to full scale (LUFS) 
and displayed to the user in an interactive waveform viewer. 
The system displays two waveforms: the unprocessed input 
and the processed output. Before any processing occurs, the  

 
Figure 1: REPAIR user interface. 
 
output is simply a copy of the input. Standard waveform 
interactions are supported: audio playback, pause and resume, 
playback of selected regions, zooming in and out, and toggling 
between the input and output in real time. 
 To the right of the waveforms are module buttons for 
declipping, noise removal, perceptual equalization, and 
loudness normalization. Each module button includes a status 
indicator: green indicates an active module that is included 
during processing, and red indicates an inactive module that is 
not included during processing. The user can click on the 
status indicator to toggle the status, or click the module button 
button to open a tab with settings for that module below the 
waveforms. To avoid loudness bias, loudness normalization 
cannot be deactivated. 
 Each settings tab includes a text description, a series of 
parameters, and an on/off button. The text description gives a 
brief overview of the module as well as an explanation for 
how to use parameters. The on/off button allows users to 
toggle the module between active and inactive states.  
 The declipping module contains no parameters.  
 The noise removal module prompts the user to select noise-
only regions of audio from the input waveform. When the 
audio is loaded, sections of noise are automatically located by 
searching for segments of audio with a root mean square value 
below a threshold. This threshold is initially set to 10% of the 
peak amplitude in the waveform, but the user can modify the 
threshold by moving a slider. The user can edit regions by 
dragging and dropping the region endpoints, add regions by 
manually selecting a region and clicking a button, and delete 
regions by double clicking them.  
 The perceptual equalizer contains three sliders, each which 
provides independent control over a subjective timbral term: 
boom, warmth, and brightness. These sliders span values from 
-50 to 50. These values do not correspond to any meaningful 
unit but are useful for reference. 
 The loudness normalization module contains one slider for 
modifying the target LUFS. The slider spans 0 LUFS to -50 
LUFS. If the target LUFS is high enough to cause clipping, the 
user is notified and the level is automatically set to the highest 
possible value that does not clip. 
 Below the waveform are two buttons: a preview button and 
a repair button. The preview button processes a 3.5 second 
portion of the audio and plays back the result to the user 
immediately after processing. This allows the user to listen to  
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Figure 2: REPAIR system architecture. 
 
the results without waiting for the entire audio to process. The 
section of audio with the largest root mean square value is 
chosen to preview. The repair button applies the processing to 
the entire audio, and upon completion updates the output 
waveform. For both the preview and the repair button, only 
active modules are used during audio processing. 
 After processing the audio, users can download the output 
as a .wav file by clicking on the download button.  

B. System Architecture 
Figure 2 shows a diagram of the system architecture. The 

system design follows a model view controller architecture. 
The views are implemented in HTML and CSS, and the 
models and controllers are implemented in JavaScript. The 
entire application runs in the browser. 

The waveform interaction was implemented using 
WaveSurfer, a third party library for audio waveform display 
and interaction [26]. The façade design pattern (i.e., creating a 
simple API for managing a complex subsystem) was used to 
facilitate easy synchronization between the input and output 
waveforms. A façade class was created containing two 
WaveSurfer objects, one for the input and one for the output, 
and the façade class functions such as play() and pause() 
internally called corresponding WaveSurfer functions. 

Along with the modules exposed to the user, a wav encoder 
was also implemented (i.e., the audio is wrapped with a wav 
header) to allow users to download the output. Additionally, 
shared signal processing code was placed into its own model. 
The perceptual equalizer was implemented using biquad filters 
from the Web Audio API [27], and the Web Evaluation Tool 
[28] was used to calculate LUFS loudness (following the 
loudness model from the EBU R 128 specification [10]). For 

frequency domain processing, the Fast Fourier Transform 
library provided by Project Nayuki was used [13]. 

Audio processing “command functions” were implemented 
to interface between the audio processing models and the 
controller. Following the command design pattern, each of 
these command functions can be black-boxed and treated in 
the same manner. Each command function processes audio on 
a separate thread (using web workers or Web Audio, 
depending on the module) and copies the result into the output 
audio buffer. When the user clicks the preview or repair 
button, the controller populates a queue of function pointers 
containing these command functions ordered as such: 
declipping, noise removal, equalization, and loudness 
normalization. To process audio, a command function is 
dequeued and run. After running each command function, if 
the queue is empty, processing is finished; otherwise, the next 
command function is dequeued and run.  Declipping occurs 
first because clipped regions should be fixed before other 
processing. Equalization occurs after noise removal because 
filtering would effect the estimation of the noise spectrum. 
Loudness normalization occurs last because any processing 
will effect the calculation of loudness. Inactive modules were 
not placed on the stack. 

C. Algorithm Description 

1) Equalization 
 The boom, warmth, and brightness sliders each control the 
gain of separate Web Audio biquad filters. The boom slider 
controls a low-shelf filter with a cutoff frequency of 60 Hz. 
The warmth slider controls a peaking filter with a middle 
frequency of 300 Hz. The brightness slider controls a high-
shelf filter with a cutoff frequency of 9000 Hz. These 
frequency values were chosen based on an online audio 
mixing tutorial by iZotope [15]. 

2) Noise Removal 
 The noise spectrum is estimated by taking the average 
spectrum of the noise segments of the signal. Wolfe and 
Godsill’s maximum a posteriori suppression rule is used to 
calculate the filter weights [11]. The filter is applied in the 
frequency domain.  
 Measures are taken to reduce artifacts. First, the filter 
weights are smoothed across frequency by using a median 
filter. This prevents notching effects that could occur if one 
weight is much larger or smaller than the surrounding weights. 
Second, the filter weights are smoothed over time using a low 
pass filter. This reduces musical noise, which is caused when 
high frequency weights change rapidly. Third, the a priori 
SNR estimate is smoothed over time using a low pass filter. 
The a priori SNR estimate is an internal variable used in the 
suppression rule calculations that should not vary rapidly. 

3) Declipping: Clipping Detection 
The clipping detection algorithm is divided into two parts: 

clipping level detection and clipping interval detection. In 
clipping level detection, positive and negative clipping 
thresholds are found by looking for ‘bumps’ in the histogram 
of a predefined width. In clipping interval detection, sample-
accurate locations of clipping are found by analyzing the 
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signal in the time-domain. Sample replacement uses a 
frequency-domain approach that focuses on fast processing, 
weak requirements on the number of samples on each side of 
the burst, and robustness to different types of signals.  

a) Clipping Level Detection 
 First, the amplitude histogram is computed with 6000 
equally spaced bins that span the amplitude range of the 
signal. To remove small, noisy fluctuations in the histogram, 
the histogram is smoothed by low-pass filtering it with a 
forward-backward exponential smoothing filter. Then, an 
adaptive threshold is computed by filtering the smoothed 
histogram with a forward-backward exponential filter with a 
significantly lower cut-off frequency. Note that the first pass 
of filtering aims to smooth the histogram, while the second 
pass aims to create a very slow-changing threshold. In order to 
locate the bumps in the histogram, a novelty function is 
computed by subtracting the threshold from the smoothed 
histogram. The novelty function will be above zero at the 
locations of the bumps. The novelty function might also be 
slightly above zero at other locations depending on the input 
signal. Then, all intervals of consecutive positive values 
occurring within the outermost 10% of the novelty function 
are found. These intervals are candidates which might 
correspond to the bumps. If the candidate does correspond to a 
bump, then it will have a large area compared to the other 
candidates. Therefore, a bump is detected when a candidate 
has an area that is 3 standard deviations above average. The 
clipping level is determined to be the amplitude corresponding 
to the innermost bin in the bump. If neither a positive nor a 
negative clipping level was found, then the algorithm reports 
that the signal contains no clipping. Thus, this method 
naturally handles cases where no clipping occurs. Note that 
histogram normalization is not required because the method 
only relies on relative values. 

b) Clipping Interval Detection 
 Given the clipping levels, the clipping intervals are found 
by analyzing the signal in the time domain. Each local 
maximum above the clipping level is assigned a clipping 
interval. The clipping intervals are then extended according to 
criteria that ensure that the slope during clipping is near zero. 
The threshold for the the slope is determined by looking at the 
bump width, which corresponds to the amount of amplitude 
variation during clipping. 
 

4) Declipping: Sample Replacement 
 An overview of the entire replacement process is shown in 
Figure 3. To remove clipping, the clipping intervals are first 
divided into short intervals and long intervals. The short 
intervals are interpolated in the time-domain using cubic 
spline interpolation. The signal is then split into a low-
frequency band and a high-frequency band. Samples in the 
high-frequency band are replaced by linearly interpolating 
time-frequency bin magnitudes. The low-frequency band 
remains untouched. Finally, the low-frequency band and the 
processed high-frequency band are combined.  

 
Figure 3: Sample replacement block diagram. 

a) Replacing Short Bursts 
 Short intervals are replaced using cubic spline interpolation. 
The cubic spline interpolator is given at most 20 samples on 
either side of the clipping interval. If either side of the clipping 
interval contains less than 3 samples, no interpolation occurs. 

b) Replacing Long Bursts 
 The distortion introduced by clipping mostly resides in high 
frequencies. Thus, the low frequencies are not processed. The 
signal is split into a low frequency band (0-100 Hz) and a high 
frequency band (100 Hz-Nyquist), and only the high 
frequency band is processed. After processing, the bands are 
combined by adding the processed high-frequency band to the 
low frequency band. It is important to note that filtering the 
signal modifies the locations where clipping occurs: the 
clipping intervals get smeared out and could be extended by 
up to the length of the filter’s impulse response. With this in 
mind, an FIR filter with an impulse response length of 25 is 
used. The filter’s cutoff frequency is 100 Hz, and the filter is 
designed to be as steep as possible given its order. The filter is 
applied forwards and backwards to ensure that the filter is zero 
phase. Because the filter is zero phase, the midpoints of the 
clipping intervals do not change. Since the support of the 
filter’s impulse response spans from sample -25 to 25, the 
clipping intervals are extended by 25 samples on either side 
after filtering.  

To replace long intervals in the high-frequency band, the 
signal is first blocked with a block size N = 512 and 75% 
overlap. The goal is to estimate the magnitudes and phases for 
each block containing any clipped samples. After obtaining 
the estimates, the time-domain signal can be reconstructed by 
inverse transforming all blocks and overlap-adding them 
together. 

 

Replace Short Bursts

Split Signal Into Low And High 
Frequency Bands

Estimate Time-Frequency 
Bins Of Clipped Blocks

FFT Transform

Inverse FFT Transform

Recombine Bands

Replace Long Bursts
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Clipping Detection Results 

Algorithm Clipping Level Histogram Block Length Precision Recall F-measure 
Histogram 95th Percentile File 0. 937 0. 889 0. 911 
Histogram 95th Percentile 3 Seconds 0.937 0.892 0.914 
Histogram 90th Percentile File 0.942 0.840 0.881 
Histogram 90th Percentile 3 Seconds 0.947 0.880 0.912 

Combined 95th Percentile File 0.941 0.910 0.925 

Combined 95th Percentile 3 Seconds 0.940 0.908 0.922 

Combined 90th Percentile File 0.950 0.902 0.925 
Combined 90th Percentile 3 Seconds 0.945 0.862 0.894 

Table 1: Clipping detection results. 

Because clipping has a negligible perceptual effect on the 
phase content of the signal, the phase of the current clipped 
block is used as the phase estimate.  

The magnitude of a clipped block is estimated by linearly 
interpolating between the magnitudes of the two closest 
reliable blocks. Reliable blocks are located by searching for 
the nearest interval of at least N / 4 consecutive non-clipped 
samples.  

There are occasions when linear interpolation of magnitudes 
causes artifacts. Most notably, overestimation of magnitudes 
during blocks containing clipped transients can cause the 
transients to sound tonal, resulting in ‘blips’ during high hat 
and snare hits. To reduce this artifact, each estimated 
magnitude is upper bounded by the magnitude of the 
corresponding bin in the clipped block. 

VI. EVALUATION 
 We focus our evaluation on the declipping algorithm, since 
this is the most novel aspect of the project. We also informally 
evaluate the end to end system. 

A. Clipping Detection 

1) Methodology 
 Evaluating the detection of soft clipping is problematic 
because it is difficult to record soft clipping with 
corresponding sample-accurate ground truths of clipping 
indices. Existing research either simulates soft clipping in 
software [7] or does not include a formal evaluation of their 
algorithm [9]. To properly evaluate with soft clipped signals, a 
method would be required that is able to record clean audio 
data and corresponding soft clipped audio time-aligned and 
phase-aligned to near-sample accuracy in order to reliably 
annotate clipping interval locations. 
 For our evaluation, soft clipping is simulated by digitally 
hard clipping a signal (and saving the clipping locations), and 
then encoding the clipped signal using a lossy codec. When a 
hard clipped signal goes through a lossy encoder, the clipped 
sections of the signal are modified, as these segments of audio 
are the most difficult to encode (the frequency-domain is least 
sparse at sharp edges).  
 To evaluate, clipping detection is run on the resulting audio 

files and the precision, recall, and f-measure of the clipping 
indices are computed. The dataset published by Homburg et 
al. is used for evaluation [1]. This dataset contains 1886 10-
second excerpts of songs from 9 musical genres. The audio 
files are encoded as MPEG-1 layer 3 files at 44.1 kHz/128 kb. 
This dataset is chosen because it covers a wide range of 
musical styles. 
 The evaluation is run with different amounts of clipping, 
different block sizes, and with different versions of the 
algorithm. The clipping levels should be chosen such that the 
amount of clipping is comparable between audio files. 
Clipping based on a percentage of the maximum amplitude 
does not normalize for amount of clipping because different 
signals have different amounts of dynamic variation. Instead, 
the clipping level is chosen based on a percentile of the 
amplitude distribution in the signal. This guarantees that the 
same number of samples clip in each audio file. Because the 
amount of perceptual clipping also depends on the frequency 
content of the signal, choosing the clipping level based on 
amplitude percentile does still not guarantee equal amounts of 
perceptual clipping. Preprocessing such as filtering the input 
by the inverse spectral envelope might be worth investigating, 
but was considered excessive for this evaluation. 
 Running the evaluation with different block sizes allows us 
to verify that the system can be used when the clipping level is 
time-variant. Comparisons are also conducted between 
clipping detection using the clipping interval detection 
(combined) vs. only using clipping level detection 
(histogram). When only using clipping level detection, 
clipping is detected at each sample with an amplitude above 
the clipping level. 

2) Results 
 Results from the clipping detection evaluation are shown in 
Table 1. The algorithm performs with an f-measure near 0.91 
in most cases. 
 In all experiments, precision (~0.94) is higher than recall 
(~0.90). One explanation for this is that the clipping level is 
chosen to be the innermost bin in the bump. It is possible that 
the amplitudes placed in bins on the inner half of the bump 
sometimes correspond to clipped regions of the signal and 
other times correspond to non-clipped regions of the signal. If 
this is the case, then there is an inherent tradeoff between 
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precision and recall for these regions of the signal. Here, 
precision is considered more important than recall because the 
goal is to replace all clipped regions of the signal, which can 
be done without knowledge of all non-clipped regions of the 
signal. 
 The following observations can be made by comparing 
results of different experiments. Firstly, experiments with 
different amounts of clipping have similar precision, recall, 
and f-measure. This indicates that the clipping level estimate 
is equally reliable regardless of the size of the bumps in the 
histogram. Secondly, precision, recall, and f-measure are 
similar between experiments using block-level histograms and 
experiments using file-level histograms. This indicates that the 
clipping detection algorithm can be used on time varying 
clipping. Thirdly, recall tends to improve when using clipping 
interval detection. This reinforces our claim that time-domain 
analysis can help find the accurate boundaries of clipping, 
which is especially useful for reducing false positives. 
 It is worth mentioning that lossy encoding might slightly 
alter the locations of clipping, which could impact the results 
of our evaluation. 

B. Sample Replacement 

1) Methodology 
Objectively evaluating sample replacement is also 

problematic because the goal is to measure the perceptual 
difference between the clean signal and the reconstructed 
signal. Here, the evaluation is based off of the standard audio 
distortion measurement metric tonal harmonic distortion 
(THD), and some declipping listening examples are provided 
online [21]. 

The total harmonic distortion (THD) of a clipped sinusoidal 
before and after sample replacement are compared. The 
sinusoidal input is soft clipped (using the same method as in 
the clipping detection evaluation) at the 90th percentile and 
samples are replaced using the ground truth clipping locations. 
The signal is 2 seconds long and sampled at 44.1 kHz. The 
performance of replacing short intervals (cubic spline 
interpolation) and replacing long intervals (frequency 
magnitude interpolation) are tested separately. When testing 
long interval replacement, the input is also padded with one 
second of a non-clipped sinusoidal before and after the clipped 
region. Without this padding, there would be nowhere in the 
signal where a clean FFT is possible (note that a clipped 
sinusoidal would normally be declipped in the time domain, 
but here the goal is to evaluate only the frequency domain 
interpolation). The padding is removed before measuring the 
THD. 

2) Results 
THD results are shown in Figure 4. Both time domain and 

frequency domain methods are shown to improve the signal 
THD. The time domain reconstruction THD increases as 
frequency increases. This is because the number of samples in 
a single period decreases as frequency increases, and therefore 
a greater interpolation accuracy is necessary for higher 
frequencies to maintain a constant THD. This is an artifact of 
sampling; if the experiment is run with a high enough sample  

 
Figure 4: Total harmonic distortion of reconstruction on sinusoidal input. 
 

rate (e.g., 192 kHz), then the time domain reconstruction THD 
is constant with respect to frequency, remaining near -70 dB. 

The frequency domain reconstruction THD decreases as 
frequency increases. This is due to phase differences between 
the clipped and the original sinusoidal. In order to verify this, 
the original phase of the sinusoidal was used, and the resulting 
THD was relatively constant with respect to frequency 
(approximately -90 dB). 

The frequency domain approach obtains a lower THD than 
the time domain approach across frequencies. However, the 
frequency domain approach required extra information (a 
clean signal before and after clipping) in order to function 
properly. This validates the two-stage approach to sample 
replacement. 

Results for sinusoidals are not necessarily generalizable to 
high bandwidth signals. The next section briefly illustrates the 
algorithm performance on real world signals.   

C. Declipping on Real World Examples 
 To illustrate the performance of our algorithm on a real 
world signal, the waveform and spectrogram of a clean, 
clipped, and declipped speech signal are visualized. Figure 5 
shows the signal waveforms. The waveform of the declipped 
signal matches the general shape of the clean signal, although 
the reconstruction peaks tend to have a lower magnitude than 
the clean peaks. Figure 6 shows the signal spectrograms. From 
the spectrogram of the clipped signal, the high frequency 
distortion caused by clipping is clearly visible. It can be seen 
from the reconstruction spectrogram that this distortion is 
mostly removed; however, the higher partials of speech are 
occasionally missing.  

D. System Computation Speed 
To evaluate the computational efficiency of the audio 

processing, we ran an experiment using a 2012 MacBook Pro 
with a 2.9 GHz quad-core processor and Google Chrome. A 
16 bit, 30 second stereo audio file sampled at 44.1 kHz was 
loaded into the web application. The audio file contained 
clipping. All modules were activated. The preview processing 
took just under 4 seconds. Processing the entire audio took just 
over 32 seconds: declipping took 16 seconds, noise removal 
took 16 seconds, and the perceptual equalizer and loudness 
normalization both ran in less than one second.  
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Figure 5: Clean and reconstructed speech signal waveforms. 
 

 
Figure 6: Clean, clipped, and reconstructed speech signal spectrograms. 

VII. DISCUSSION 
It is important for audio processing to happen quickly so 

that users can receive timely audio feedback about their 
parameter adjustments. From the perspective of a user, audio 
processing in REPAIR might take too long for a satisfactory 
experience; however, the preview button provides some audio 
feedback within an acceptable amount of time (under 4 
seconds).  

Processing time could be reduced by doing audio 
processing over a server. Audio processing code could then be 
written in an efficient low level programming language such 
as C++. Adding a server side to the application could also 
greatly reduce the amount of memory used on the client. 
However, server-side processing raises privacy concerns for 
users (e.g. potential storage of user audio on the server) and 
adds complexity to the overall system. 

VIII. CONCLUSION 
REPAIR can enhance the quality of mobile phone 

recordings, which make up a large percentage of audio and 
video content on the internet. It is our hope that this project 
will inspire video uploading services to include an audio 
processing toolchain in their workflows. 

IX. DELIVERABLES 

Web application: https://cplaguna-audio.github.io/REPAIR/   

Github repository: https://github.com/cplaguna-
audio/REPAIR  
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