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ABSTRACT

Although instrument recognition has been thoroughly
research, recognition in polyphonic music still faces chal-
lenges. While most research in polyphonic instrument
recognition focuses on predicting the predominant instru-
ments in a given audio recording, instrument activity detec-
tion represents a generalized problem of detecting the pres-
ence or activity of instruments in a track on a fine-grained
temporal scale. We present an approach for instrument activ-
ity detection in polyphonic music with temporal resolution
ranging from one second to the track level. This system
allows, for instance, to retrieve specific areas of interest
such as guitar solos. Three classes of deep neural networks
are trained to detect up to 18 instruments. The architec-
tures investigated in this paper are: multi-layer perceptrons,
convolutional neural networks, and convolutional-recurrent
neural networks. An in-depth evaluation on publicly avail-
able multi-track datasets using methods such as AUC-ROC
and Label Ranking Average Precision highlights different
aspects of the model performance and indicates the impor-
tance of using multiple evaluation metrics. Furthermore, we
propose a new visualization to discuss instrument confusion
in a multi-label scenario.

1. INTRODUCTION

Music is an acoustic rendition of musical ideas. In most
cases, one or more instruments are used for this acoustic
rendition. As humans, we are easily able to identify the
instruments being played in a song after exposure to their
sound. However, the same cannot be said for computer algo-
rithms. The task of recognizing musical instruments in an
audio signal has been an active area of research in the field
of Music Information Retrieval (MIR). While instrument
recognition in monophonic audio (only one instrument is
present in a signal) is reasonably successful [13], the task
is much harder in a polyphonic setting. The challenges
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include, among others, the large variance in timbre and per-
formance style within an instrument class combined with
perceptual similarity of some instruments and the superpo-
sition of multiple instruments in time and frequency. Last
but not least, the lack of data with relevant annotations for
data-driven approaches is also a problem.

The identification of instruments and their activity in a
song is important for music browsing and discovery, such as
searching for songs with specific instruments or identifying
the position of lead vocals or a saxophone solo. Instrument
recognition can also inform other MIR tasks. For example,
music recommendation systems can benefit from modeling
a user’s affinity towards certain instruments and music genre
recognition systems could improve with genre-dependent
instrument information. It can also be useful for tasks such
as automatic music transcription, playing technique detec-
tion, and source separation in polyphonic music, where
pre-conditioning a model on specific instruments present
could possibly boost its performance.

An Instrument Activity Detection (IAD) system takes
an audio track as input and outputs continuous instrument
activity levels along the entire track. These activities may
be binary (on/off) or on a continuous scale as likelihood.
IAD systems may have varying time-resolutions for the
instrument activity depending on the use case. For example,
a solo detection use case would have a finer time-resolution
that an instrument tagging system which would work on
the track level. This paper proposes a deep neural network-
based IAD system trained using multi-track datasets. We
also address the problem of evaluation of an IAD system.

The following section reviews literature in instrument
recognition and other related tasks. Section 3 describes the
proposed IAD system starting with pre-processing the data,
the model architectures and post-processing steps. Next,
Section 4 describes the dataset used, the various experi-
ments, the evaluation metrics and the proposed method to
visualize confusion. We report the results for the experi-
ments in terms of the evalution metrics and discuss these
results in Section 5. Finally, in Section 6 we conclude
the paper enumerating a few possible future directions for
research on IAD.



2. RELATED WORK

The task of ‘instrument recognition’ can be divided into two
distinct research problems based on the type of data being
analyzed: (i) instrument recognition in monophonic audio
and (ii) instrument recognition in polyphonic audio. This
section presents an overview of past literature on instrument
recognition as well as related topics such as automatic music
tagging and sound event detection (SED).

2.1 Instrument Recognition in Monophonic Music

In monophonic music, instrument recognition may be per-
formed on sounds at the note-level or on continuous audio
signals of solo instrument performances. An extensive
review of traditional feature extraction and classification
approaches for note-level instrument recognition has been
published by Herrera et al. [15]. For solo phrases, Es-
sid et al. utilize MFCCs as features, Principal Component
Analysis (PCA) for dimensionality reduction, and Gaus-
sian mixture models (GMM) for classifying solo phrases
of 5 instruments [8]. Krishna and Sreenivas propose the
so-called Line Spectral Features (LSF). LSFs are used with
a GMM and evaluated for instrument family classification
and 14-class instrument classification [19].

In addition to extracting established pre-defined features,
learned features have also been applied to this task. Yu et al.
utilize sparse spectral codes and a support vector machine
(SVM) for classifying single-source and multi-source (poly-
phonic) audio [31]. Han et al. propose to use sparse coding
for learning features from mel-spectrograms extracted from
a dataset of single-note audio clips for 24 instruments. A
SVM is trained to classify the instruments using the learned
features achieving a classification accuracy of around 95%
for 24 instrument classes [13].

2.2 Instrument Recognition in Polyphonic Music

Recent work on instrument recognition has focused on poly-
phonic musical signals. Polyphonic audio synthesized from
datasets of individual instrument sounds, such as the RWC
dataset [10], as well as real-world audio recordings have
been used for this task.

Kitahara et al. extract spectral and temporal features
along with PCA and Latent Discriminant Analysis (LDA)
for classification in duo and trio music [17]. Heittola et al.
combine the results of Non-negative Matrix Factorization
(NMF) with excitations of notes obtained from a multi-pitch
tracking algorithm [18] to extract harmonic spectra from
a mixture signal. The separated spectra are represented by
MFCCs and classified with a GMM [14].

Fuhrmann et al. extract a large set of features repre-
senting an audio clip and perform predominant instrument
detection in real-world audio signals using one SVM per
instrument [9]. The ‘predominant’ instrument is defined
as one with continuous presence in a snippet of audio and
is easily audible for a human listener. Bosch et al. extend
the work by utilizing source separation to segregate the
polyphonic audio into streams: ‘bass,’ ‘drums,’ ‘melody,’
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Figure 1. Block Diagram for DNN-based IAD System

and ‘other.’ The segregated audio is subsequently used for
classification using the aforementioned system [2].

Han et al. apply deep CNNs for the task of predominant
instrument recognition and report a significant improvement
of results over previous approaches [12]. The authors also
provide an in-depth discussion of the model parameters and
a qualitative analysis of the CNN models.

2.3 Related Tasks

In music tagging, a track is labeled with a variety of labels
that describe it, such as genre, instruments, and mood. IAD
may be considered a sub-task in music tagging since the
tags often include instrumentation. Choi et al. use CNNs
and CRNNs for the task of automatic tagging [5, 6]. Liu
and Yang further proposed a method to localize the events
in music tagging [20] which may be compared to IAD.

Sound Event Detection (SED) aims at detecting envi-
ronmental sounds in a stream of audio. Some examples of
sound events are gunshots, car horns, baby cries, dog barks,
etc. Cakir et al. explore this task with deep neural networks
on a dataset of environmental sounds [3, 4]. The main dif-
ference between SED and IAD is that in SED the sound
events are uncorrelated and thus easier to discriminate while
musical sources tend to have higher correlation in popular
music. Music instrument sounds might also have a rich
harmonic structure absent in most environmental sounds.

3. METHOD

A high-level block diagram for the presented IAD system
is shown in Fig. 1. The individual processing steps are
described in detail below.

3.1 Pre-processing

All tracks are downsampled to 22.05 kHz, downmixed to
mono and normalized by the root mean square energy. Each
track is the chunked to 1 s long snippets. Each snippet is
transformed into a mel-spectrogram, which is motivated
by the non-linear frequency resolution of the human audi-
tory system [22], and has been proven to be a useful input
representation for multiple MIR tasks such as automatic
tagging [5], onset detection [25], and feature learning [29].

The mel-spectrograms are calculated using Librosa [21]
with 96 mel bands from 0–11.025 kHz. The block size and
hop size are 46.4 ms and 11.6 ms, respectively. Decibel
scaling is applied to the Mel-Spectrogram energies. The
result is a matrix of dimension 96× 86.
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Table 1. Model Architecture. (Conv2D: 2D Convolutional
Layer, MP: 2D Max-Pooling, k: kernel size, d: filter depth)

3.2 Model Architectures

Deep Neural Networks (DNNs) have consistently outper-
formed traditional MIR approaches in several tasks such
as, music transcription [26, 30], onset detection [25], music
tagging [5]. As this is also true for predominant instrument
classification (compare Sect. 2), we choose to investigate
DNNs for the task of IAD. Our architectural choices are
influenced by the work of both Choi and Cakir [4–6].

The usability of DNNs stems from their ability to ap-
proximate complex non-linear functions mapping an input
feature space to the outputs. This enables researchers to
provide raw or minimally processed data to a DNN so that
it may learn features relevant for the task at hand.

We compare the three broad classes of DNNs: multi-
layer perceptrons, convolutional neural networks, and —
since convolutional networks are useful for acoustic mod-
eling [5]— a convolutional-recurrent network instead of a
traditional RNN. The benefit of CRNN lies in the fact that it
is able to learn both local and temporal features. Note that
the model hyperparameters have been chosen so that the
number of parameters for the three models is comparable.

3.2.1 Multi-Layer Perceptron

The input mel-spectrogram matrix is flattened into a vector
for the MLP model. A fairly simple architecture is chosen:
4 hidden layers with 256 hidden units in each layer and an
output layer of 18 hidden units. Dropout [28] is used with a
keep probability of 0.5 at each layer.

3.2.2 Convolutional Neural Network

The CNN architecture is shown in Table 1 (left). Small
square filters are chosen in order to facilitate hierarchical
feature learning from local patches that grow larger in size
with network depth. In order to preserve spatial dimensions,
stride of 1 and Same zero-padding scheme is used for all
the convolutional layers. Each Conv2D layer is followed by
batch-normalization [16] and the Exponential Linear Unit
(ELU) [7] activation function. The final convolution layer’s
output is flattened before feeding it to a fully connected
layer. Finally, we connect to an output layer of 18 units
with a sigmoid activation function.

Train Test
Instrument Abbr. T # T #
drum set dru 300 720036 79 15957
electric bass bgtr 253 620592 62 13344
male singer ms 200 351384 62 10038
dist. elec. gtr dgtr 171 396204 40 7522
clean elec. gtr cgtr 119 225456 34 5875
synthesizer syn 118 295524 33 5712
acoustic gtr agtr 91 230556 25 5241
piano pf 89 187536 24 4063
vocalists vox 84 154596 12 1895
female singer fs 79 149232 23 3733
string section str 24 39444 10 1278
elec. piano epf 24 52680 14 2075
elect. organ eorg 22 39516 11 2117
double bass db 21 40116 9 1786
cello vc 13 22176 9 1623
violin vn 10 28452 15 2385
tabla tab 9 41640 3 806
flute fl 7 9972 7 1171

Table 2. Dataset distribution: T denotes tracks and # de-
notes 1 s snippets

3.2.3 Convolutional Recurrent Neural Network

The CRNN architecture is shown in Table 1 (right). CRNNs
have been applied to tasks such as music tagging [6] and
sound event detection [4]. We hypothesize that it is a good
choice for IAD since we want the model to learn from the
evolution of spectra over time. The same configuration of
padding and striding, batch-normalization, and non-linear
activation is used for the convolutional modules. Only the
depth and height of the final Conv layer output is flattened,
thus preserving the temporal structure of the high-level
ConvNet features. Finally, the last GRU output is connected
to the output layer consisting of 18 units with a sigmoid
activation function.

3.2.4 Training Procedure

Binary cross-entropy is used as the loss function for all
models. Stochastic gradient descent with a learning rate
of 0.0001 and momentum of 0.9 is used to optimize the
loss function. The models are trained using batches of 32
instances for 20 epochs, which is sufficient for the training
and validation loss to converge for each of the architectures.

3.3 Temporal Aggregation

Since the neural networks are trained using 1 s snippets of
audio, a prediction is made for every 1 s in the test track. For
experiments and evaluation with varying time-resolution,
we max-pool the predictions and the ground truth over
non-overlapping segments according to the desired time-
resolution. For example, in order to have a 5 s resolution,
the maximum across 5 continuous predictions for every
instrument is chosen as the predicted score for the corre-
sponding 5 s snippet in the track.

4. EVALUATION

4.1 Dataset

The dataset used in previous work on predominant instru-
ment detection [2, 9, 12], IRMAS, consists of a training set



with 3 s audio snippets manually annotated with one of 11
predominant (but non-percussive) instrument labels. These
snippets may contain other instruments. The testing set
contains audio snippets of variable length with 1 or more
predominant instruments. We believe that training using
polyphonic audio labeled with a single instrument may not
be the ideal strategy for IAD. In this paper, we used multi-
track audio to construct a dataset for IAD. The motivation
behind using multi-track datasets is that the annotations for
instrument activity can be generated automatically using
stem energy as opposed to human annotations which may
contain more errors. In addition, each snippet may con-
tain multiple instrument labels, providing the models richer
ground truth.

Two publicly available multi-track datasets are used for
training and testing of the models. MedleyDB [1] and Mix-
ing Secrets [11] were combined for this task in order to
increase the number of tracks. In a pilot study involving
only MedleyDB, we observed a significant improvement in
model performance as the amount of training data increased.
MedleyDB contains 330 multi-tracks and Mixing Secrets
contains 258 multi-tracks. The two datasets combined con-
tain tracks with approximately 100 different instruments.
For this paper we consider 18 most frequently occurring in-
struments. The instruments considered are listed in Table 2.
Note that the tracks may contain other instruments that the
IAD system is not trained to detect.

Each multi-track in the dataset is associated with a mixed
track. Instrument activation confidence is annotated auto-
matically according to the process described in [1]. These
annotations are computed with time-resolution of 0.0464 s.
For our IAD system, however, we defined the minimum
time-resolution to be 1 s. The annotations are aggregated by
picking the maximum value across the time-axis to obtain
one activation value per instrument per snippet. This allows
for instruments to have a large activation value in the snip-
pet even if they were active for a small period of time, as
opposed to a value close to 0 if the mean was chosen for
aggregation. Finally, the activations are binarized with a
fixed threshold θ = 0.5.

The datasets contain tracks where the stems have cross-
talk or bleed. For these tracks, stem activations for a certain
instrument may contain activity from another instrument.
To prevent incorrect annotations, tracks with bleed are not
considered for the IAD dataset, although we make excep-
tions for rare instruments such as tabla. Additionally, tracks
without a single instrument of interest are not considered.

Subsequently, the dataset is split into a training and a
testing set. We generate a random artist-conditional split to
prevent the album or artist effect in the testing phase. The
split is chosen such that there is a reasonable number of
tracks per instrument. Table 2 lists the distribution of the
data for the split. The training set consists of 361 tracks
and the testing set consists of 100 tracks. 1 The training set
is augmented using pitch-shifting: 6 semitones lower to 5
higher than the original with 1 semi-tone increments.

1 The track IDs for the dataset splits used are available at
https://github.com/SiddGururani/ISMIR2018

4.2 Experimental Setup

First, we preprocess both splits of data as described in
Sect. 3.1 resulting in a time-frequency input representation
and ground truth pair for each 1 second snippet. Table 2
lists the distribution of the different instrument classes in
terms of 1 second snippets. Next, we train each of the DNN
architecture as described in Sect. 3.2. Since the models
were observed to converge to a solution in 20 epochs, we
do not perform any form of early-stopping. In addition,
we generate a validation set using a randomly sampled set
of tracks from both the training and testing set due to lack
of data. 50 tracks from the training and testing splits are
picked, resulting in a validation set of 100 tracks. We use
this scheme since we want to validate on unseen data while
not using the entire test set. The validation set is used to
evaluate the models at the end of each epoch. Finally, we
test the best performing model for each class of DNNs.
We test the models for various time-resolutions of activity
detection: 1 s, 5 s, 10 s and track-level aggregation.

4.3 Evaluation Metrics

Evaluation of IAD systems, when looked at in detail, poses
some challenges. Since each snippet has zero or more in-
struments, IAD is a multi-label classification problem. The
sigmoid activation leads to an output between 0 and 1, de-
noting the predicted activity of that instrument. However, as
pointed out by Han et al. [12], binarizing the outputs using a
fixed threshold and evaluating the accuracy depends on the
selected threshold. Additionally, the dataset is not balanced
across the instrument classes, hence stressing the need for
metrics robust against unbalanced class distribution.

Previous work on predominant instrument recognition
uses metrics relevant for multi-class classification systems
such as precision, recall and f-measure [2,12]. Since IAD is
a multi-label classification problem, we use Label Ranking
Average Precision (LRAP) and the Area Under Receiver
Operating Characteristic curve (AUC-ROC).

4.3.1 Label Ranking Average Precision

LRAP was proposed in [24] to evaluate multi-label classifi-
cation systems. Intuitively, the LRAP measures the ability
of a model to assign better ranks to true labels for an in-
stance. For example, if all the true labels for an instance
are ranked higher than other labels in consideration, the
ranking precision for this instance is 1. LRAP measures the
average ranking precision across all the instances. In our
experiments, we compute LRAP using 2 approaches: (i) Mi-
cro: LRAP computed using the concatenated outputs for
all testing tracks. (ii) Macro: computed on the track level
and averaged. This normalizes any effect of track length on
the model performance, which could skew the results, for
instance, if the model performs well for a particular long
song but poorly for shorter songs with fewer snippets.

4.3.2 Area Under ROC Curve

The AUC-ROC or, in short, AUC is computed by first plot-
ting the true positive rate and false positive rate on a plane
for various classification thresholds, which results in a curve.
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Figure 2. LRAP for various time-resolutions

AUC is the area under this curve. It measures the probability
that the model assigns a higher score to a randomly selected
positive instance than a negative instance. The AUC gives
a summary of the model performance without the need to
adjust a threshold for binarization.

Since AUC is usually applied to binary classification,
we compute it per instrument class. Only the micro AUC
is computed as not all tracks contain all instruments. We
report an average AUC by taking the mean of the micro
AUC per class.

The reason for selecting AUC instead of precision, recall
or f-measure is that most literature on instrument classifica-
tion tends to use a common fixed threshold for all classes
which bears the risk of being suboptimal. Han et al. suggest
the use of a different threshold per instrument class [12].
Using the AUC to summarize model performance alleviates
the problem of threshold selection while making it easier to
directly compare model performance.

4.4 Confusion Visualization

In multi-class classification, every data sample has only one
possible prediction and one ground truth label. A confusion
matrix visualizes the frequency of confusion between every
pair of predicted class label vs. ground truth class label.
In a multi-label classification problem such at IAD, every
instance has multiple possible predictions and zero or more
ground truth labels. Hence, a traditional confusion matrix
cannot be computed. However, as a confusion matrix is an
intuitive way to gain insights into the model, we propose an
alternative form of confusion visualization computed from
the binarized predictions and the ground truths.

We hypothesize that an instrument is wrongly detected
due to the activity of some instrument present in the audio.
We are particularly interested in looking at which instru-
ments were incorrectly missed (false negative) when an
instrument was wrongly detected (false positive). For a
particular false positive instrument, this is equivalent to
looking at the probability of observing false negatives for
the other instruments. This probability can be estimated
using a histogram of false negatives. Vertically stacking
these histograms for each instrument results in a matrix of
dimension C × C (C =number of instrument classes). We

1 s

5 s

10 s

Track

Figure 3. AUC per instrument for CRNN model

convert the histograms to probabilities by normalizing each
row of the matrix to a sum of 1.

Note that unlike a traditional confusion matrix, this is
not a symmetric matrix. We only focus on one row at a
time in order to compare probabilities of observing false
negatives for a given false positive instrument.

5. RESULTS AND DISCUSSION

A comparison of model performance is summarized in
Figure 2 and Table 3. It can be observed that CNN and
CRNN outperform MLP in both metrics. This is expected
since the convolutional layers allow the model to learn
hierarchical acoustic features from the time-frequency rep-
resentation more efficiently. However, the CRNN does not
outperform the CNN, which may be attributed to the fact
that only 1 s second snippets are used. The temporal dimen-
sion of the input is reduced to only 5 time steps after the 4
CNN layers. The benefits of using recurrent layers are more
noticeable when longer sequences are involved as in work
by Choi et al. where they use inputs of length 29 s [6]. In ad-
dition, the receptive field of the deeper layers of the CNN is
large enough for learning temporal features. Another obser-
vation is that output aggregation tends to improve models’
label ranking performance and mean AUC.

Figure 3 shows the AUC per instrument of the CRNN
model for the chosen time-resolution aggregation. We ob-
serve that using output aggregation in time leads to better
performance in almost all instrument classes. The model
achieves high AUC not only for majority instruments in
the dataset but also for minority instruments such as flute,
violin and cello, suggesting that it not simply predicting the
majority. We also observe that the model does not seem to
perform well for vocals in general. While it does achieve
high AUC for male singers, the AUC for female singers
and vocalists is low. We investigate this further using the

MLP CNN CRNN
1 s 71.28 77.55 77.5
5 s 70.85 78.35 78.76
10 s 70.82 78.59 79.22
Track 71.1 80.92 80.1

Table 3. Mean AUC for various time-resolutions
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tioned on a true positive of a particular instrument

visualization method described in Sect. 4.4.
To construct the confusion visualization as described in

Sect. 4.4, we pick the CRNN model and use the 1 s time-
resolution outputs for the test set. Picking the threshold
for binarizing the predictions is not straightforward. A
fixed threshold of 0.5, for example, led to 0 detections for
string section and electronic organ. Therefore, we adjusted
the best thresholds for each class. These thresholds are
determined by computing the class-wise f-measure at all
score thresholds and selecting the threshold giving the best
f-measure in the validation set. Figure 4 shows the con-
structed visualization. A high value in a row implies that
the model may be confusing that particular pair of instru-
ments more often than others. The following observations
can be made from the figure:

• (bgtr, db): This confusion is possibly due to similar
frequency range of the electric bass and double bass.

• (dgtr, agtr), (dgtr, cgtr), (cgtr, dgtr), and (agtr, dgtr):
While confusion between acoustic and distorted gui-
tar is unusual, the confusion between clean and dis-
torted guitar is possibly explained by the variety in
tone for both the clean and distorted guitars. A light
crunch or low gain setting may possibly get misclas-
sified. This could also explain the poor performance
for clean electric guitar.

• (dru, tab) and (tab, dru): Both drum set and tabla are
percussive instruments. In addition, one of the test
tracks containing tabla has a ‘drum machine’ label
which possibly causes drum false positives.

• (dgtr, syn) and (syn, dgtr): This is an interesting case
since the variance in sound for both, the distorted
guitar and synthesizers, is very large. Further investi-
gation is needed to understand this case.

Next, we investigate the poor model performance on
vocal classes. Figure 4 shows confusion between male and
female singers implying that the model might be incorrectly
classifying female singers as male. In order to investigate
this phenomenon, the three vocal classes were combined for
a follow-up experiment. We max-pool the predictions and

1 s 5 s 10 s Track
Average AUC
(ms, fs, vox) 0.709 0.725 0.737 0.782

AUC vocals 0.822 0.96 0.975 0.998

Table 4. AUC for different time resolutions comparing
pooled vocals against averaged AUC for vocal classes

the ground truth for these three classes, and recompute the
AUC for this new ‘vocals’ class. Table 4 shows the average
AUC of the three classes and the AUC of the combined ‘vo-
cals’ class. The model performs significantly better for the
combined class confirming our hypothesis that it confuses
the vocal classes.

Another interesting finding is that the best threshold
chosen per instrument for binarization ranges from 0.02
to 0.55 with lower thresholds for minority instruments in
general. We observe a correlation coefficient of 0.9 between
the thresholds and the training data distribution suggesting
that the model has learned biases in the dataset. The impact
of this finding requires further experiments.

6. CONCLUSION

We presented a DNN-based IAD system trained using multi-
track datasets to detect 18 instruments. The CRNN and
CNN outperform MLP architectures for the task and per-
form well for detecting instruments common in popular mu-
sic, such as drums, electric bass, acoustic guitars, distorted
guitars and vocals. It also performs well for instruments in
classical music such as flute, cello, violin even though they
were under-represented in the dataset. We also stress the
need for multiple metrics and visualizations for evaluation
of systems such as IAD which is non-trivial to evaluate.

As future work, a few extensions and research directions
are: (i) pre-training the network using monophonic stems
from the multi-track datasets and subsequently training and
testing for IAD, (ii) designing the convolutional network
for the CRNN as proposed by Jordi et al. [23] instead of the
currently used 3×3 filters as is common in computer vision,
(iii) converting the proposed monolithic model architecture
for IAD to a hierarchical architecture for instrument family
classification first and subsequently instrument classifica-
tion. While this paper treats the model as a black box and
focuses on evaluation and analysis of model outputs, it is
worth studying the model to understand the internal repre-
sentations by means of visualization tools such as t-SNE
and saliency maps [27] as performed by Han et al. [12].

By drawing attention to challenges in IAD with this
paper, we hope to encourage the MIR community to explore
this task. IAD is a rewarding avenue for research due to its
real-world use cases as well as the potential to augment and
improve performance in other tasks in MIR.
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