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ABSTRACT

While many music-related blind source separation methods focus on mono or stereo material, the detection and
reduction of crosstalk in multi-track recordings is less researched. Crosstalk or ’bleed’ of one recorded channel in
another is a very common phenomenon in specific genres such as jazz and classical, where all instrumentalists are
recorded simultaneously. We present an efficient algorithm that estimates the crosstalk amount in the spectral
domain and applies spectral subtraction to remove it. Randomly generated artificial mixtures from various anechoic
orchestral source material were employed to develop and evaluate the algorithm, which scores an average SIR-Gain
result of 15.14 dB on various datasets with different amounts of simulated crosstalk.

1 Introduction

In many real-world music performance recordings,
bands and ensembles are recorded without perfect
acoustic separation. As a result, microphones which
were intended to capture a particular instrument also
record nearby signals; these additional signals are re-
ferred to as crosstalk, spill, or bleed. Although mixing
practices allow to integrate crosstalk into the final mix,
there are many instances where a better separation of
these tracks is desirable for mixing. Other applications
such as correctly annotating audio data with activation
values, crosstalk suppression in speech audio, or col-
lecting audio data for classification, could benefit from
this approach as well.

Established blind source separation methods for mu-
sic are typically focused on mono or stereo content
while employing techniques based on factorization al-
gorithms like NMF [1] [2], ICA or PCA [3], Hidden-
Markov-Models [4], or spatial correlation [5]. More

recent approaches also apply deep neural networks to
train separation models [6] [7]. However, if there is
single source material from recording scenes in form
of multitrack data available, none of the methods men-
tioned above take advantage of this additional informa-
tion since they are tailored for mono/stereo content.

The method presented in this paper focuses on cases
where multi-track recordings of, e.g., classical ensem-
bles are available. Clifford and Reiss [8] have investi-
gated a method for crosstalk cancellation for multiple
sources by using delay estimation and centered adap-
tive filters. Both Kokkinis et al. [9] and Prätzlich et al.
[10] estimate the spectral power density of each voice
and then apply a Wiener filter for crosstalk reduction.

In the proposed system, the crosstalk on a particular
track is modeled as a weighted sum of the remaining
tracks of this recording. The amount of crosstalk be-
tween each pair of tracks is estimated by minimizing a
cost function based on spectral energy content through
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gradient descent with momentum [11]. As an alterna-
tive to Wiener filtering, the crosstalk is then removed
through spectral subtraction [12].

For evaluation purposes, various datasets of anechoic
orchestral multi-track recordings [13] are used to create
artificial mixtures with different amounts of crosstalk (-
18 dB, -12 dB and -6 dB). These artificial mixtures will
be referred to as mixture tracks. Results are evaluated
in two ways: by comparing the mixing matrix to the
estimated spectral subtraction weights via correlation
and by computing the standard blind source separation
performance metrics SDR, SIR, and SAR [14].

2 Method

The main processing steps of the presented method
are displayed in the flowchart in Fig. 1. First, a fre-
quency domain representation of the multi-track data is
computed by STFT. The crosstalk estimation algorithm
models the crosstalk on a particular mixture track as
a weighted sum of the other tracks. This estimation
process employs an optimization technique based on
gradient descent to minimize a spectral energy cost
function. After the spectral subtraction, the crosstalk-
reduced magnitude spectrogram is recombined with
its original phase information to obtain the crosstalk-
reduced audio data by inverse STFT.

Let X( j,n,k) denote the matrix containing the mag-
nitude spectrogram of the j-th mixture track, cal-
culated with a Hamming window (framesize 4096
samples, hopsize 2048 samples) with k representing
the frequency bin index and n the time frame. The
analysis window length is approx. 85 ms (at 48 kHz).
The rationale behind using comparably long analysis
frames is that short time delays have less effect on
the crosstalk reduction method and can therefore be
neglected. Xmix,l(n,k) = X( j = l,n,k) represents the
spectrum of the l-th track with crosstalk.

2.1 Crosstalk estimation

This section outlines the process of estimating the
amount of crosstalk from the multi-track data. For
each target instrument l, the amount of crosstalk from
all other tracks is estimated to derive the weighting
factor λl, j via gradient descent on a cost function Θ(λ )
that aims to minimize the spectral crosstalk energy in
the target mixture spectrum Xred,l(n,k), summed over
all time frames N as well as all frequency bins K:
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Fig. 1: Processing steps of the crosstalk reduction al-
gorithm

Θ(λ ) =
1
N
·

N

∑
n=1

K

∑
k=1

[
Xmix,l(n,k)−

J

∑
j=1, j 6=l

λl, j ·X( j,n,k)
]2

(1)

A correction factor 1/N accounts for different track
lengths. The gradient for λl, j=i(m) in iteration step m
is then given by:

∂Θ(λl,i(m))

∂λl,i(m)
=− 2

N
·

N

∑
n=1

K

∑
k=1

[
Xmix,l(n,k)−
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∑
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]
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(2)
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λl, j bassoon clarinet bass flute f_horn sopran viola violin cello

bassoon 0 0.208 0 0.141 0.314 0.046 0.086 0.147 0.058
clarinet 0.182 0 0.07 0.119 0.18 0.065 0 0.105 0.072
bass 0 0.073 0 0 0.298 0.114 0.03 0.18 0.287
flute 0.065 0.062 0 0 0.204 0.017 0 0.112 0
f_horn 0.095 0.066 0.086 0.14 0 0.031 0.141 0 0.059
sopran 0.053 0.085 0.118 0.054 0.118 0 0.102 0.084 0.017
viola 0.059 0 0.022 0 0.4 0.078 0 0.2 0.157
violin 0.102 0.089 0.122 0.179 0 0.054 0.166 0 0.065
cello 0.047 0.062 0.185 0 0.135 0.011 0.128 0.063 0

Table 1: Example matrix for estimated λl, j values, computed by the gradient descent algorithm

The update rule with momentum [11] is defined by:

λl,i(m+1) = λl,i(m)− γ(m) · v(m+1). (3)

The adaptation v is computed as:

v(m+1) = β · v(m)+
∂Θ(λl,i(m))

∂λl,i(m)
(4)

with β as the momentum parameter, sometimes called
friction, set to 0.8. The learning rate γ slightly de-
creases in each iteration step m:

γ(m+1) = 0.99 · γ(m) (5)

with an initial value of γ(0) = 0.001. Convergence is
reached if the stepwise optimization of cost function
Θ(λ (m)) falls below a certain threshold δ :

Θ(λ (m+1))−Θ(λ (m))< δ . (6)

The gradient descent algorithm aims to find the λl, j
that guarantee the lowest overall power within the
spectrum Xred,l according to the cost function Θ(λ ).
By utilizing this approach, λl, j adapts to the relative
crosstalk amount of the different mixture tracks dur-
ing the crosstalk estimation. All weighting factors λl, j
smaller than zero are automatically set to zero during
the gradient descent process.

Table 1 shows an entire set of λl, j values for a dataset
with nine tracks. The first row displays all estimated
weighting factors λbassoon, j that have to be subtracted
from the bassoon track to minimize crosstalk.

2.2 Crosstalk reduction

After estimating the weight factors for all the bleeding
instruments for each track as outlined in Sect. 2.1, a
sum of their weighted magnitude spectra can be sub-
tracted from Xmix,l(n,k) by simple spectral subtraction
[12]. The result with reduced crosstalk Xred,l(n,k) is
therefore calculated as

Xred,l(n,k) = Xmix,l(n,k)−
J

∑
j=1, j 6=l

λl, j ·X( j,n,k), (7)

where J represents the total number of tracks. The
weighting factor λl, j is estimated from the spectro-
grams as explained below. If the subtraction results
in negative spectrum values in Xred,l(n,k), they will be
set to zero. Finally, the reduced magnitude spectrum is
combined with the original phase information from the
STFT analysis to obtain the crosstalk-reduced audio
file by inverse Fourier transform.

Figure 2 displays example results of the process de-
scribed for one excerpt from the dataset. The left
graphic shows the magnitude spectrogram of a single
clean bassoon signal Xdry,bassoon, the plot in the mid-
dle represents the magnitude spectrogram of the same
signal with crosstalk Xmix,bassoon, and the result with
reduced crosstalk Xred,bassoon is shown on the right. All
spectrograms are in logarithmic dB scale.

3 Evaluation

There exist no standardized datasets or evaluation meth-
ods for the tasks of crosstalk estimation and reduction
for multi-track data. A dataset for these tasks should
allow for full control over parameters in the mixing pro-
cess such as the amount and combination of crosstalk.
The multi-track recordings used to create the dataset
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bassoon clarinet bass flute f_horn sopran viola violin cello

bassoon_mix 1 0.097 0.051 0.085 0.088 0.066 0.074 0.097 0.026
clarinet_mix 0.097 1 0.094 0.062 0.073 0.06 0.031 0.073 0.07
bass_mix 0.051 0.094 1 0.024 0.103 0.101 0.084 0.117 0.079
flute_mix 0.085 0.062 0.024 1 0.111 0.029 0.011 0.073 0.004
f_horn_mix 0.088 0.073 0.103 0.111 1 0.063 0.079 0.002 0.077
sopran_mix 0.066 0.06 0.101 0.029 0.063 1 0.083 0.015 0.046
viola_mix 0.074 0.031 0.084 0.011 0.079 0.083 1 0.109 0.006
violin_mix 0.097 0.073 0.117 0.073 0.002 0.015 0.109 1 0.062
cello_mix 0.026 0.07 0.079 0.004 0.077 0.046 0.006 0.062 1

Table 2: Randomly generated mixing matrix for the -18 dB Mozart dataset, maximal values of 0.126

used in this study are from anechoic symphonic record-
ings.

Two different metrics are used to evaluate the two
main processing blocks of the presented algorithm,
respectively. First, the correlation coefficient is com-
puted between the estimated lambda values and a trans-
formed mixing matrix to evaluate the crosstalk esti-
mation. Second, established blind source separation
measures (SDR, SIR, and SAR, see below) are used on
the audio results to evaluate the overall system.

3.1 Dataset

The dataset is created from excerpts from four orches-
tral anechoic multi-track recordings [13]:

• Beethoven: Symphony no. 7, I mov. (3:11 min):
11 Parts: Flutes, Oboes, Clarinets, Bassoon,
French horns, Trumpets, Timpani, Violin, Viola,
Cello, Contrabass

• Bruckner: Symphony no. 8, II mov. (1:27 min):
13 Parts: Flutes, Oboes, Clarinets, Bassoon,
French horns, Trumpets, Trombones, Tuba, Tim-
pani, Violin, Viola, Cello, Contrabass

• Mahler: Symphony no. 1, IV mov. (2:12 min):
14 Parts: Flutes, Oboes, Clarinets, Bassoon,
French horns, Trumpets, Trombones, Tuba, Tim-
pani, Percussions, Violin, Viola, Cello, Contrabass

• Mozart: An aria of Donna Elvira from the opera
Don Giovanni (3:47 min):
9 Parts: Flute, Clarinet, Bassoon, French horns,
Violin, Viola, Cello, Contrabass, Soprano

For each of these four pieces, three different mixture
sets are constructed with a randomly generated mix-
ing matrix. This mixing matrix has ones on the di-
agonal and positive values elsewhere that are limited
to a defined maximum crosstalk value for the remain-
ing elements. The three mixture sets have a different
maximum crosstalk amount: -6 dB, -12 dB, and -18 dB,
which relates to maximum mix factors of 0.5, 0.25, and
0.126, respectively. Table 2 shows an example mixing
matrix (-18 dB dataset of the Mozart piece). Every
row shows the contributions of each input track to one
mixture track. The first row, for example, contains all
fractions of the solo anechoic instrument tracks that are
combined to the artificial bassoon mixture. A symmet-
ric mixing matrix ensures that, for example, the scaling
factor of the bassoon instrument on the clarinet mixture
track equals the factor of the clarinet instrument on the
bassoon mixture track. It is important to note that these
mixing values are scaling factors that are independent
of the individual track’s acticity and loudness; thus, the
actual amount of crosstalk is not necessarily reflected
through the mixing matrix value.

Time delays are then calculated according to the recip-
rocal quadratic relation of distance and amplitude in
the free field and accounted for in the mixing process.
The reference amplitudes A = 1 (diagonal elements in
the mixing matrix) correspond to a a distance of 1 m.
Finally, all mixture tracks are normalized to the maxi-
mum amplitude of the loudest mixture to preserve the
mixing matrix relations.

3.2 Correlation results

The mixing procedure may be represented as a system
of linear equations Ax = b in which A is the mixing
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Fig. 2: Three different magnitude spectra excerpts from the unmixed original bassoon track (left), the artificially
generated bassoon mixture with 6 dB crosstalk (middle) and the crosstalk reduced track (right)

matrix, x represents the vector of unmixed instrument
tracks and b describes the mixture vector. Solving this
equation for x leads to the de-mixing matrix A−1. The
spectral subtraction Eq. (7) can be seen as related to
this system of linear equations, where the λl, j matrix
(see Table 1) represents an estimation of this inverted
matrix with flipped signs and empty diagonal. For the
sake of concise notation, we will refer to λl, j as L from
now on. Similar to the mixing operation, we thus get a
similar system of linear equations x≈ (−L+ I)b and
it follows that A−1 ≈−L+ I.

The matrices cannot be expected to be identical even
in the best case as time delays were introduced when
creating the dataset, however, the correlation between
A−1 and (−L+ I) should be high if the estimation
works. Table 3 shows the correlation results for each of
the three mixture sets, averaged over all four orchestral
pieces. While the -12 dB and -18 dB sets both show
very high correlation values of at least 0.9 over all four
pieces with barely any variation, the -6 dB sets perform
comparably bad for all pieces except the Mozart one.
While the Mahler -6 dB set still shows a correlation of
about 0.75, the two other sets show only correlation
values between 0.6 and 0.437.

3.3 BSS Eval results

In order to evaluate the crosstalk suppression, the blind
source separation (BSS) evaluation measures signal-

-6dB -12dB -18dB

Beethoven 0.437 0.964 0.933
Bruckner 0.595 0.961 0.941
Mahler 0.752 0.931 0.900
Mozart 0.932 0.973 0.976

Average 0.678 0.957 0.937

Table 3: Correlation of A−1 and (−L+ I)

to-distortion-ratio (SDR), signal-to-interference-ratio
(SIR), and signal-to-artifacts-ratio (SAR) [14] were
computed and investigated. These measures have
become standard metrics for the evaluation of blind
source separation systems, for example, in the SiSEC
campaign1. Since the present approach processes multi-
track data as opposed to most BSS methods which
work with mono or stereo content, the following re-
sults cannot be compared directly to other studies. BSS
evaluation metrics are highly dependent on the datasets
used for separation (or crosstalk reduction). For this
reason, a comparison of BSS Eval measures of the mix-
tures and the actual crosstalk reduced audio files seems
more suitable to get a better insight of the algorithm
performance. Table 4 shows the BSS Eval measures of
mixtures and crosstalk reduced tracks as well as their

1http://sisec.inria.fr, last accessed March 6, 2018
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Mixture Crosstalk-reduced Difference

-6 dB -12 dB -18 dB -6 dB -12 dB -18 dB -6 dB -12 dB -18 dB

SDR 0.04 5.79 11.83 7.88 12.95 15.15 7.84 7.16 3.32
SIR 0.04 5.8 11.93 13.3 22.16 27.75 13.26 16.36 15.81
SAR 48.05 39.56 31.53 10.48 13.75 15.49 -37.57 -25.81 -16.05

Table 4: BSS evaluation measures for mixtures, crosstalk reduced tracks and their difference, sorted by dataset and
averaged over all four orchestral pieces

difference.

SDR and SIR measures for the mixture tracks show
very similar values, ranging from 0 dB to about 12 dB
according to the intervals given by the datasets. The
SAR values for those vary from 48 dB down to about
31.5 dB in equal distance. For both the -6 dB and -
12 dB mixture sets the crosstalk reduced audio tracks
show SDR improvements of about 7–8 dB while the
-18 dB sets only gain about 3 dB. The difference in
terms of SIR measures is very similar, all sets show
improvements in the range of 13–16 dB. Changes re-
garding the SAR values depend more on the mixture
set. While the SAR measure drops heavily for the -6 dB
set, the -12 dB set shows a negative gain of about 26 dB
and the -18 dB SAR value only decreases by 16 dB.

To investigate the variation of the BSS Eval mea-
sures for different music pieces, Table 5 displays the
SDR/SIR difference of mixtures and crosstalk-reduced
tracks as well as the absolute SAR scores for the
crosstalk reduced results. SDR values increase nearly
uniformly over all four orchestral pieces. While the
increase for the -6 dB and -12 dB mixture sets ranges
from 6 dB to 9 dB, the difference regarding the -18 dB
mixture set only results in about 2–4 dB. SIR values
are even more evenly distributed: most results lie
in the interval of about 14–16 dB except the Bruck-
ner/Beethoven values for the -6 dB dataset (10–11 dB)
and all Mozart scores which are about 4 dB higher.

SAR values, in turn, quantify the musical noise in the
crosstalk-reduced audio tracks. Similar to the SDR/SIR
gain results, the metrics especially vary for the -6 dB
mixture set, where the values range from 9 dB to about
12.5 dB. Results constantly increase for the mixture
sets with lower crosstalk, although the improvement
from the -6 dB to -12 dB sets is more distinct than from
-12 dB to -18 dB. Again, the Mozart pieces have the best
results being about 3 dB higher than the other pieces.

4 Discussion

The results of evaluation metrics show generally con-
sistent trends. Very high correlation values of te de-
mixing matrix A−1 and (−L+ I) for both the -12 dB
and -18 dB dataset for all pieces validate the success
of the presented approach and prove that the gradient
descent algorithm finds suitable λl, j values minimizing
the cost function. Multiple runs with random initializa-
tion further indicate that the detected cost minima are
actually global minima.

There exist multiple reasons explaining the variation of
the results between the different pieces. First, the total
amount of crosstalk is not equal between the pieces.
This is shown by the SIR measure of the mixtures given
in Table 6 as these values represent the actual amount
of crosstalk. While the increase over mixtures is con-
sistently 6 dB as expected, the variation between pieces
amounts to up to 4 dB. There are two reasons for that.
First, the way the mixing matrix is generated means
that the resulting amount of crosstalk depends on the
number of instrument tracks. Second, the mixing ma-
trix only signifies the factor but the resulting amount
of crosstalk also depends on the track content and dis-
tribution; for example, percussion or timpani mixture
tracks often show very low SIR and SAR since events
only occur rarely during the track. Therefore, the opti-
mal solution for the minimization of the cost function
using the spectral energy criterion produces relatively
high λl, j values which in turn result in a harsh spectral
subtraction and more musical artifacts. Those artifacts
are quantified in the SAR score (see Table 4).

Crosstalk reduction for instruments that have overlap-
ping frequency ranges with a similar tonal character
is harder than for instruments with a unique spectral
signature. Sections where the whole ensemble plays
simultaneously are more difficult to manage for the
algorithm than solo parts of individual instruments. In
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SDR gain SIR gain SAR absolute (results)

-6 dB -12 dB -18 dB -6 dB -12 dB -18 dB -6 dB -12 dB -18 dB

Beethoven 7.53 7.33 3.5 11.21 15.83 15.52 10.78 14.09 15.54
Bruckner 6.67 6.66 2.41 10.12 14.62 14.29 8.99 12.69 14.12
Mahler 8.04 7.33 3.46 14.66 15.39 14.99 9.71 12.24 14.54
Mozart 9.14 7.31 3.92 17.03 19.59 18.46 12.43 15.97 17.74

Table 5: SDR/SIR gain for each mixture set as well as absolute SAR values of the crosstalk reduced results

all cases, the Mozart piece achieves the best perfor-
mance scores. The SAR values of the three remaining
pieces range about 3 dB in comparison the the Mozart
piece, each one following the above mentioned relation
so that the absolute SIR values increase in 6 dB steps
towards the -18 dB datasets (see Table 6).

In general, the crosstalk reduction method generates
promising results. Whether the algorithm is suitable for
a specific use case highly depends on the application.
For tasks such as annotating audio data with instrument
activations, the amount of separation (compare SIR)
is crucial while the actual audio quality is irrelevant.
The amount of subtraction can be controlled by scaling
the λl, j values, which can be an advantage in this sce-
nario. In other cases, such as mixing software or more
consumer-oriented products, the amount of musical
artifacts can be decreased by utilizing an improved sep-
aration approach. Possible such improvements could
include filtering approaches [15, 16] or other musical
noise suppression techniques [17, 18] to reduce arti-
facts. Thresholding in the spectral or temporal domain
could constitute another post-processing feasibility.

The generated and employed dataset contains numer-
ous different instruments which makes the task more
challenging. To explore the applicability for a broader
field of possible applications, the algorithm needs to be
tested on different musical genres, for example with the
MedleyDB dataset [19] or the Mixing Secrets dataset
[20].

-6dB -12dB -18dB

Beethoven 0.03 5.92 11.73
Bruckner -1.35 5.1 11.46
Mahler -0.91 3.81 10.81
Mozart 2.39 8.39 13.73

Table 6: Absolute SIR values of the mixtures

5 Summary

The present study has introduced a new method for
crosstalk reduction applied to multi-track data such as
multi-microphone ensemble recordings. In a first step,
this approach estimates the amount of crosstalk from a
particular mixture track with a weighted sum of the re-
maining tracks by iteratively minimizing a spectral cost
function with gradient descent. Second, this weighted
sum of remaining instruments is subtracted from the
mixture track to perform the reduction. Combining the
resulting magnitude spectrum with its original phase
information allows to obtain the crosstalk-reduced au-
dio data via inverse STFT. In order to evaluate the
algorithm, various mixtures with different amounts of
crosstalk were artificially generated from multiple ane-
choic orchestral recordings. Results were evaluated
in two ways: first, by correlating the mixing matrices
and the resulting lambda matrices containing the es-
timated crosstalk factors to investigate the crosstalk
estimation itself, and second by employing the stan-
dard blind source separation evaluation metrics SDR,
SIR, and SAR to evaluate the suppression. Both evalua-
tion metrics showed promising results. Post-processing
techniques such as filtering or noise suppression could
further improve the algorithm by reducing artifacts. For
possible applications in a wider musical scope, tests
with more genres are recommended.
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