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Abstract The modeling of artificial, human-level cre-

ativity is becoming more and more achievable. In recent

years, neural networks have been successfully applied

to different tasks such as image and music generation,

demonstrating their great potential in realizing com-

putational creativity. The fuzzy definition of creativity

combined with varying goals of the evaluated generative

systems, however, make subjective evaluation seem to

be the only viable methodology of choice. We review the

evaluation of generative music systems and discuss the

inherent challenges of their evaluation. Although subjec-

tive evaluation should always be the ultimate choice for

the evaluation of creative results, researchers unfamiliar

with rigorous subjective experiment design and without

the necessary resources for the execution of a large-scale

experiment face challenges in terms of reliability, valid-
ity, and replicability of the results. In numerous studies,

this leads to the report of insignificant and possibly irrel-

evant results and the lack of comparability with similar

and previous generative systems. Therefore, we propose

a set of simple musically informed objective metrics en-

abling an objective and reproducible way of evaluating

and comparing the output of music generative systems.

We demonstrate the usefulness of the proposed metrics

with several experiments on real-world data.
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1 Introduction

The desire to understand creativity has driven the de-

velopment of computationally creative systems among
a wide variety of tasks [5]. Just as deep learning has

reshaped the whole field of artificial intelligence, it has

reinvented generative modeling in recent years [63]. This

thriving research area includes, for example, the creative

generation or the style transfer of artwork such as paint-
ings or music [15,21].

Even with the research interest in generative sys-

tems, the assessment and evaluation of such systems

has proven challenging. Formally, categorization of eval-

uation strategies can be derived from specifying the

design ontology of the system. For instance, based on

the Function-Behavior-Structure (FBS) ontology [18,62],

we evaluate the actual behavior of a system compared to

its expected behavior. The evaluation of creative systems

can be categorized into function and structure evalua-

tion, which relates directly to the so-called summative

and formative approaches. While the former aims to as-

sess whether the results of a system meet the stated goal

of creativity, the latter focuses on monitoring how the in-

structional goals and objectives are being met [13,20,46].

Without a clear definition and consensus on the essence

of (human) creativity, summative evaluation remains

largely problematic [28].

As the ultimate judge of creative output is the human

(listener or viewer), subjective evaluation is generally

preferable in generative modeling. The challenges of de-

signing and conducting an experiment leading to valid,

reliable, and replicable results, however, are often under-

estimated. Controlling all relevant variables, eliminating

bias, and recruiting a sufficient number of qualified sub-

jects can easily blow the required resources out of reach

for small-scale projects.The most common shortcomings
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of subjective studies evaluating generative systems are

closely related to both the available resources and the

design of experimental methodology [28,47].

Thus, a method for objective evaluation of generative

systems is desirable.

The image generation community has benefited from

the introduction of the idea of the inception score by

Salimans et al. [47]. It uses a pattern recognition model

to assess the generated sample. The general concept of

the inception score is based on the assumption that a

well-trained image classifier roughly has a human-like

classification ability [47]. This idea has been adapted by

multiple researchers to allow for an objective measure

of various generative systems [26, 29, 39]. The idea of

the inception score is convincing and the first results

look promising; ultimately, however, the assumed corre-

lation to human judgment still needs further scientific

examination [19,64].

The evaluation of generative music systems faces

even harder challenges than that of image generation

systems [9]. The sequential yet highly structured form,

the ever-changing interaction between composition and

performance, and the abstract nature of meaning and
emotion in music [36,61] make a semantic description

of music exceedingly hard. The automatic analysis and

categorization of music is, although having made great

progress, not close to human-level performance [35].

This makes assessing music very difficult [3, 22, 41, 59]

and partly explains why music assessment could not be

automated by computational models so far.

Despite these high-level challenges, we will show

below that state-of-the-art generative music systems

struggle with creating musical content that follows basic

technical rules and expectations. We argue that these

technicalities have to be solved before addressing the

questions of aesthetics of creative works with high-level

structural and harmonic properties.

Therefore, we propose a formative evaluation strat-

egy for systems generating symbolic music. The pro-

posed method does not aim at assessing musical pieces

in the context of human-level creativity nor does it at-

tempt to model the aesthetic perception of music. It

rather applies the concept of multicriteria evaluation [54]

in order to provide metrics that assess basic technical

properties of the generated music and help researchers

identify issues and specific characteristics of both model

and dataset. The usefulness of the presented method is

demonstrated through a series of experiments, including

dataset analysis, comparison of state-of-the-art music

generation models, and assessment of generative music

systems.

2 Related Work

As mentioned above, research on automatic music gener-

ation systems has suffered from the difficulty of design-

ing evaluation methodologies [42]. The two challenges of

measuring the success of a generative system are address-

ing the summative and the formative assessment of the

system behavior. Subjective approaches to measuring

the success of generative systems by means of listening

experiments can often be categorized as summative as-

sessment while objective evaluation strategies mostly

fall into the category of formative assessment. Confus-

ing these two challenges leads to unclear evaluation

strategies. Although subjective evaluation is generally

preferable for evaluating generative modeling, it might

require significant resources. Objective methods, on the

other hand, can be easily executed yet often lack musical

relevance as they are often not based on musical rule

systems or heuristics.

2.1 Subjective evaluation in music generation

Most assessments of generated symbolic music are based

on inputs from human listeners. These evaluations ei-

ther follow the concept of a musical Turing test [3] or

use query metrics based on the modeled compositional

theory [2].

The Turing test [55] follows an intuitive concept that

evaluates whether a machine is able to exhibit behavior

indistinguishable from humans. One strategy to adapt

the Turing test to generative music systems is asking

the subjects to identify the pieces they consider to be

composed by a human as opposed to a computer [34].

This strategy has been used in several studies as listed

in Table 1 [1, 21, 24, 25, 32, 49]. Over the past decades,

shortcomings of the Turing test have been pointed out

in various areas [2, 17, 44]. Many of these problems also

apply to musical Turing tests. One of the fundamental

issues, however, is that many studies confound the two

questions on whether a piece is aesthetically pleasing

and whether it is composed by a human.

The design of a listening experiment is complex due

to the many variables ranging from the selection and

rendition of audio examples, the listening environment,

and the selection of subjects, to the phrasing of the ques-

tions. Without proper guidance (compare, e.g., [6]), we

find that many contemporary studies struggle with pre-

senting significant scientific evidence. Table 1 lists some

of the variables for several major subjective evaluation

studies in the context of music generation. It is worth

noting that all of these evaluations are performed with

a different problem configuration, i.e., different evalua-

tion criteria are used, and both the questionnaires and
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[43] [11] [60] [49] [1] [24] [25] [21] [32]

Subject’s background T N/A T & UT 3L N/A N/A N/A 3L 4L
Sample size 16 27 21 973/986 48 96 52 1272 759

Comp. w/ models yes yes yes yes yes no yes yes no
Comp. w/ human-composed yes no no yes yes yes yes yes yes
Comp. w/ random samples no no no no no no no no no

Table 1: Experiment design for subjectively evaluating music generation research. The following abbreviations

are use for the subjects’ background: T (musically trained), UT (musically untrained), 3L (Three-point level of
expertise), 4L (Four-point level of expertise).

the listening examples are proprietary (if not arbitrary)

and hard to compare. Without addressing these issues

properly, the reported results can only be understood

as providing preliminary evaluation results and fail at

representing a scientific benchmark. First, the majority

of them ignore factors associated with the subjects them-

selves (e.g., their level of expertise), which influences

further analysis and the reliability of the experimen-

tal result [6]. Second, most the studies rely —probably

due to limited resources— on a relatively small sample
size [11,43,60], which raises questions about the range

of the confidence interval and the study’s statistical

significance (which are often not reported) [33]. Note

that the common lack of reported statistical measures

of confidence and significance in itself could be seen as

an indicator of insufficient scientific rigor. Finally, some
of the studies rely on the preference of one model over

another [11, 60]. The drawback of such a test paradigm

is the absence of a standard comparison or absolute

reference. While it can be used to measure relative dif-

ferences or improvements, it cannot provide any absolute

measurement of quality.

Last but not least, these tests carry the risk of over-
estimating the subject’s comprehension, as Ariza con-

cludes after comparing several subjective evaluation

methods (e.g, Musical Turing Tests, Musical Directive

Toy Tests and Musical Output Toy Tests) [2].

2.2 Objective evaluation in music generation

Given the advantages over subjective evaluation with re-

spect to reproducibility and required resources, several

recent studies have assessed their models objectively.

We categorize the objective evaluation methods used by

the recent studies on data-driven music generation into

the following categories: (i) probabilistic measures with-

out musical domain knowledge, (ii) task/model specific

metrics, and (iii) metrics using general musical domain

knowledge.

2.2.1 Probabilistic measures

The use of evaluation metrics based on probabilistic
measures such as likelihood and density estimation has

been successfully used in tasks such as image genera-

tion [54] and is increasingly used in music-related tasks

as well [14, 52]. For example, Huang et al. propose

a frame-wise evaluation computing the negative log-
likelihood between the model output and the ground

truth across frames [24]. Similarly, Johnson considers

the note combinations over time steps of the training

data as the ground truth and reports the summation

of the generated sequence’s log-likelihood across notes

and time steps [27]. Since the recurrent model used in

his study is trained with the goal of maximizing the

log-likelihood of each training sequence, the measure is

argued to be a meaningful quantitative measure of the

performance. The used probabilistic measures provide

objective information, yet Theis et al. observe that “A

good performance with respect to one criterion does not

necessarily imply a good performance with respect to

another criterion” and provide examples of bad samples

with very high likelihoods [54].

2.2.2 Model-specific metrics

As the approaches and models vary greatly between

different generative systems, some of the evaluation met-

rics are correspondingly designed for a specific model

or task. Bretan et al. proposed a metric for successfully

predicting a music unit from a pool of units in a genera-

tive system by evaluating the rank of the target unit [8].

Mogren designed metrics informed by statistical mea-

surements of polyphony, scale consistency, repetitions,

and tone span to monitor the model’s characteristics

during its training [37]. Common to these evaluation ap-

proaches is the use of domain-specific, custom-designed

metrics as opposed to standard metrics. Obviously, the

authors realized the problems with using standard met-

rics (e.g., edit distance of melodies) as musically mean-

ingless and implemented metrics inspired by domain

knowledge. The variability and diversity of the proposed

metrics, however, leads to comparability issues. The
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design of non-standard metrics also poses additional

dangers, such as evaluating only one aspect of the out-

put, or evaluating with a metric that is part of the

system design.

2.2.3 Metrics based on domain knowledge

To address the multi-criteria nature of generative sys-

tems and their evaluation [9], various humanly inter-

pretable metrics have been proposed. More specifically,

these metrics integrate musical domain knowledge and

enable detailed evaluation with respect to specific music

characteristics. Chuan et al. utilize metrics modeling the

tonal tension and interval frequencies to compare how

different feature representations can influence a model’s
performance [12]. Sturm et al. provide a statistical anal-

ysis of the musical events (occurrence of specific meters

and modes, pitch class distributions, etc.), followed by a

discussion with examples on the different application sce-

narios [52]. Similarly, Dong et al. apply statistic analysis

including tonal distance, rhythmic patterns, and pitch

classes to evaluate a multi-track music generator [14].

The advantages of metrics taking into account domain

knowledge are not only in their interpretability, but also
in their generalizability and validity — at least as long

as the designed model aims to generate music under the

established rules.

3 Method

Following the approach of using domain knowledge for

designing human-interpretable evaluation metrics for

generative music systems, we present a formative evalu-

ation strategy based on a comprehensive set of simple

yet musically meaningful features that can be easily

applied to a wide variety of different symbolic music

generation models.

The two targets of the proposed evaluation strategy

are to provide (i) absolute metrics in order to give

insights into properties and characteristics of a generated

or collected set of data, and (ii) relative metrics in order

to compare two sets of data, e.g., training and generated.

The overall method is illustrated in Fig. 1 and described

below.

In a first step, we gather two collections of samples

as our input datasets. For the application of objective

evaluation, one dataset contains generated samples, the

other contains samples from the training (target) dataset.

This approach can also be used for applications such

as dataset analysis or the comparison of characteris-

tics of two generative systems. We then extract a set

of custom-designed features that are rooted in musical

domain-knowledge yet easy to understand and interpret.

These features encompass both pitch-based and rhythm-

based features. After extracting these features for both

datasets, we are able to compute both an absolute mea-

surement (Fig. 1 top) and a relative measurement. The

absolute measurement can provide useful insights to a

system developer about the training dataset properties

and generative system’s characteristics.

The relative measurement (Fig. 1, bottom), on the

other hand, allows to compare two distributions in vari-

ous dimensions. It is computed by first applying pair-

wise exhaustive cross-validation to compute the distance

of each sample to either the same dataset (intra-dataset)

or to the other dataset (inter-dataset). The results are

distance histograms per feature. Next, the Probability

Distribution Function (PDF) of each feature histogram

is estimated by kernel density estimation [50].

Finally, we compute two metrics for the objective

evaluation of generative systems from the training dataset’s

intra-set distance PDF (target distribution) and the

inter-set distance PDF between the training and gen-

erated datasets: (i) the area of overlap and (ii) the

Kullback-Leibler Divergence (KLD). The steps are in-

troduced in detail in the following sections.

3.1 Input representation

Our proposed evaluation method reads input files in Mu-

sical Instrument Digital Interface (MIDI) format. MIDI

is considered as one of the standard formats of symbolic
domain representation of music [38]. Although a music

generation system might have its own data representa-

tion and output format, the output is usually converted

to MIDI format for distribution and auralization. The
MIDI file format also provides useful musical metadata

such as the time signature and the bar length through

the resolution of the MIDI file.

For the current implementation of our method, the

input samples are required to be monophonic melodies

with a fixed number of measures.

3.2 Feature extraction

The features listed below are computed for both, the

entire sequence, and for each measure in order to get

some structural information.

3.2.1 Pitch-based features

1. Pitch count (PC): The number of different pitches

within a sample. The output is a scalar for each

sample.
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Fig. 1: General work flow of the proposed method

2. Pitch class histogram (PCH): The pitch class his-

togram is an octave-independent representation of

the pitch content with a dimensionality of 12 for a

chromatic scale [4, 40]. In our case, it represents the

octave-independent chromatic quantization of the

frequency continuum.

3. Pitch class transition matrix (PCTM): The tran-

sition of pitch classes contains useful information

for tasks such as key detection [30,53], chord recog-

nition [31], or genre pattern recognition [10]. The

two-dimensional pitch class transition matrix is a

histogram-like representation computed by counting

the pitch transitions for each (ordered) pair of notes.

The resulting feature dimensionality is 12× 12.

4. Pitch range (PR): The pitch range is calculated by

subtraction of the highest and lowest used pitch in

semitones. The output is a scalar for each sample.

5. Average pitch interval (PI): Average value of the

interval between two consecutive pitches in semi-

tones. The output is a scalar for each sample.

3.2.2 Rhythm-based features

1. Note count (NC): The number of used notes. As

opposed to the pitch count, the note count does not

contain pitch information but is a rhythm-related

feature. The output is a scalar for each sample.

2. Average inter-onset-interval (IOI): To calculate the

inter-onset-interval in the symbolic music domain,

we find the time between two consecutive notes. The

output is a scalar in seconds for each sample.

3. Note length histogram (NLH): To extract the note

length histogram, we first define a set of allowable

beat length classes [full, half, quarter, 8th, 16th,

dot half, dot quarter, dot 8th, dot 16th, half note

triplet, quarter note triplet, 8th note triplet]. The

rest option, when activated, will double the vector

size to represent the same lengths for rests. The

classification of each event is performed by dividing

the basic unit into the length of (barlength)/96, and

each note length is quantized to the closest length

category. The output vector has a length of either

12 or 24, respectively.

4. Note length transition matrix (NLTM): Similar to

the pitch class transition matrix, the note length tran-

sition matrix provides useful information for rhythm

description [57]. The output feature dimension is

12× 12 or 24× 24, respectively.

Obtaining these domain-knowledge based features

give us a generally interpretable representation of the

data. The features, however, have different dimension-

ality and normalization, complicating their direct use.

Therefore, additional processing is applied to all these

features.

3.3 Absolute measurement

During the model design phase of a generative system,

it can be of interest to investigate absolute metrics from

the output of different system iterations or of datasets

as opposed to a relative evaluation. A typical example

is the comparison of the generated results from two
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generative systems: although the model properties can-

not be determined precisely for a data-driven approach,

the observation of the generated samples can justify or

invalidate system design choices. (e.g., Sect. 4.2).

To acquire the analysis, the mean and standard

deviation1 of each feature of the data are computed.

3.4 Relative measurement

In order to enable the comparison of different sets of
data, the relative measure generalizes the result among

features with various dimensions; the features are sum-

marized to (i) the intra-set distances and (ii) the differ-

ence of intra-set and inter-set distances.

3.4.1 Pairwise cross validation

To compare the distance of the features within and be-

tween sets of data, a pairwise exhaustive cross-validation

[16] is performed for each feature. In each cross-validation

step, the Euclidean distance of one sample to each of
the other samples is computed. If the cross-validation is

computed within one set of data, we will refer to it as

intra-set distances. If each sample of one set is compared

with all samples of the other set, we call it the inter-set

distances. The output of this process is a histogram of

distances for each feature.

3.4.2 Kernel density estimation

In order to smooth the histogram results for a more

generalizable representation, kernel density estimation

[50] is applied to convert the histograms into PDFs. A

Gaussian kernel and Scott’s rule of thumb of bandwidth

selection [48, 56] is used for all features in inter-set and
intra-set distances.

Note that the feature dimension plays a role im-

pacting the robustness of density estimation. Silverman

provides examples for the relation of sample size and

dimensionality for the density estimation and the corre-

sponding mean square error [50].

For the estimated PDFs, simple statistical measures

such as mean and standard deviation (STD) can be

extracted and directly convey properties of the input

datasets. For instance, the mean value in the intra-set

distances corresponds to the diversity of the samples

within a dataset, and the mean value of the inter-set

distances is a measure of the average similarity of the

two input datasets in this feature dimension. On the

other hand, the STD value serves as an indication of

the reliability of mean value.

1 The deviation here refers to an element-wise standard
deviation, which retains the dimension of each feature.

KLD OA
Set2&1 0.073 0.652
Set3&1 1.971 0.107
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Fig. 2: Example of the proposed evaluation metric: mea-

suring difference of intra-set and inter-set distances

by Kullback-Leibler divergence (KLD) and Overlapped

area (OA).

3.4.3 Kullback-Leibler divergence and Overlapped area

In addition to the statistical measures representing intra-

set distances or inter-set distances, similarity measures

between distributions are also of interest in the applica-

tion of evaluating music generative systems. Two metrics

are computed, the Kullback-Leibler Divergence (KLD)

and Overlapping Area (OA) of two PDFs. We propose

to compute the distance between the target dataset’s

intra-set PDF and the inter-set PDF.

Although the KLD is the most common measure of

how two PDFs diverge from each other, it is unbounded
and asymmetric, i.e., DKL(A||B) 6≡ DKL(B||A)); for

this reason we further calculate the OA to provide a

bounded measure in the range ∈ [0, 1].

The above similarity measures can indicate the be-

havior of the evaluated system, as it compares the sim-

ilarity of two input datasets to each other and within

themselves. An artificial example is illustrated in Fig. 2,

where we calculate the intra-set and inter-set distances

among three sets of randomly sampled entries from

Gaussian distributions with same variance but different

mean value (Set 1: µ = 0, σ = 1; Set 2: µ = 2, σ = 1;

Set3:µ = 5, σ = 1). Three datasets all have identical

intra-set distances, but distinct inter-set distances. By

applying the proposed metric, the smaller KLD and

larger OA between Set 2 & Set 1 inter-set distances

and Set 1 intra-set distances shows that Set 2 is more

similar to Set 1.
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Folk Jazz
Intra-set Absolute measure Intra-set Absolute measure

mean STD mean STD mean STD mean STD

PC 2.242 1.658 9.300 1.962 3.101 2.355 8.570 2.740
PC/bar 4.178 1.340 - - 5.635 1.982 - -
NC 11.583 8.281 47.020 10.018 11.386 8.510 26.270 10.001
NC/bar 5.415 2.446 - - 7.615 2.905 - -
PCH 0.339 0.107 - - 0.480 0.150 - -
PCH/bar 1.746 0.264 - - 2.702 0.389 - -
PCTM 0.307 0.057 - - 0.417 0.107 - -
PR 3.773 2.830 15.900 3.318 4.013 3.202 12.150 3.612
PI 0.557 0.439 2.694 0.499 0.989 0.818 2.590 0.903
IOI 0.031 0.027 0.277 0.029 0.838 3.754 0.922 2.706
NLH 0.769 0.504 - - 0.607 0.229 - -
NLTM 0.729 0.429 - - 0.557 0.162 - -

Table 2: Experimental result of dataset evaluation (see Sect. 4.1)

4 Use-case demonstration and discussion

Three experiments are conducted to demonstrate the

value of the proposed analysis of musical characteristics:

1. Exp. 1 — Dataset evaluation: the analysis of datasets

is one of the fundamental processes of a data-driven

experiment. In this experiment, we evaluate (the dif-

ferences between) two datasets from different music

genres, and how this result could inform the devel-

oper of a generative system.

2. Exp. 2 — System comparison: as mentioned above

(see Sect. 2.1), the comparison between two gener-

ative systems is a common approach in subjective
evaluation experiments. In this experiment, we eval-

uate two music generation systems and compare the

results with the summative answers from a subjective

evaluation of these systems.

3. Exp. 3 — Performance evaluation: a typical prob-

lem after prototyping a generative system is the

parametrization of the system. This experiment is

an example for the typical usage of the objective

evaluation method. We discuss how parameters can

influence the result of a generative system by compar-

ing the generated samples with the training dataset.

4.1 Experiment 1: Dataset evaluation

Musical style is defined by a set musical characteristics.

Due to the complexity of musical content, observing

style and properties of a music dataset can be a major

challenge. This experiment aims to demonstrate how

the proposed approach allows to characterize data from

two different music genres and provide insights into

genre-specific properties.

4.1.1 Input datasets

The chosen two genres are folk and jazz music. The
folk music dataset is the Irish Tunes collected from the

Henrik Norbeck’s ABC Tunes website [23]. The jazz

music dataset comprises jazz lead sheets from both the

Wikifonia database [51] and publicly available jazz solo

transcriptions collected by Mason et al. [8].
The folk and jazz music datasets contain 2351 and

392 entries, respectively. A pilot experiment determin-

ing the necessary amount of samples was carried out.

The experiment was then executed with 100 randomly

selected songs from each dataset. Of these songs, only

the first 8 bars are considered.

4.1.2 Analysis and discussion

Table 2 lists the results for both the intra-set distances

and the absolute measurements for features with one

dimension. We can make the following observations.

First, the higher mean of the intra-set self-distance for

nearly all features in the jazz genre as compared to folk

indicates that samples in the jazz genre generally have

a higher diversity, a result that matches expectation as

folk is often based on simple patterns [45] while jazz

generally allows more freedom in its musical composition

[7]. Second, we observe considerable differences for the

absolute measures of features such as note count and

average inter-onset-interval.

Figure 3(a) illustrates the average pitch class tran-

sition matrices (PCTM). The folk dataset is more re-

stricted in the usage of certain pitches (i.e., D], F, G],

B[.) and shows a comparably sparse matrix compared

to jazz, where both pitches and pitch transitions tend

to have more variety.

We can also observe that the folk music dataset

shows a larger mean for features such as note length

histogram (NLH), and note length transition matrix
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Fig. 3: Example of absolute measurement: (a) average pitch class transition matrix (PCTM) and (b) average note

length transition matrix (NLTM) of Jazz and Folk music dataset (see Sect. 4.1)

(NLTM). However, by illustrating the average NLTMs

in Fig. 3(b), we notice that folk dataset again shows

a sparse matrix as compared to the jazz dataset. This

implies that the jazz dataset has a higher variety of note

length transitions within a song while having a lower

diversity of note length transition across the dataset.

In data-driven approaches to music generation, the

output of the generative system should directly relate to

the characteristics of the training dataset. The presented

absolute measures allow for a musically intuitive way

of highlighting various dimensions of such characteris-

tics. This can help with the critical step of designing a

generalizable dataset, possibly from various sources, for

training a generative system.

4.2 Experiment 2: System comparison

The second experiment compares MidiNet [60], a genera-

tive adversarial network (GAN) for symbolic domain mu-

sic generation, with the melody lookback recurrent neu-

ral network (Lookback RNN) of the Magenta project [58].

As discussed in the previous Sect. 3.4, the proposed ob-

jective evaluation can assist studying different model

structures and behaviors when the training datasets

for both models are available. In some cases, however,

the training datasets are inaccessible as is the case for

Magenta. Given this issue, we consider this scenario

for the proposed method to compare the characteris-

tics of different models. We again exploit the intra-set

distances and the absolute measurement utlized in the

previous experiment. Furthermore, we attempt to relate

reported subjective evaluation results to the identified

characteristics.

4.2.1 Input datasets

We implement and train the so-called MidiNet “Model

2” [60], below referred to as MidiNet 2, by using 526

MIDI tabs with 8 bars parsed from the TheoryTab.2

The MidiNet model and the public accessible pre-

trained model of Magenta’s Lookback RNN generate

100 samples each. Each sample contains a melody with

8 bars. The first bar is provided by the user while the

remaining 7 bars are generated by the models.

4.2.2 Analysis and discussion

The results of Exp. 2 are shown in Table 3. It can

be observed that the two model outputs are distinctly
different in several dimensions such as pitch count, pitch

interval and pitch range; this is shown by the fact that

the mean values of the inter-set distances are larger than

the mean values of both intra-set distances. Furthermore,

the absolute measurements NC and PR indicate that

MidiNet 2 tends to use more notes and has a higher

average pitch range than Magenta’s lookback RNN.

The fact that the outputs of these two systems have

been used previously in a subjective study [60, Sect. 5]

allows us to compare the subjective results with these

objective results. The listening test resulted in a compa-

rable rating for the questions How real and How pleasing

the model outputs are; for the question How interesting,

however, MidiNet acquired a slightly higher rating. This

interestingness result might be related to the character-

istics of higher pitch range, pitch count, and note count

that we find in the absolute measures.

Magenta’s RNN, on the other hand, shows a higher

mean among the intra-set distances in these features;

this somewhat contradicts the result of the subjective

test. Therefore, we investigate this issue further by look-

ing into the STD value, as a higher STD might hint at a

2 https://www.hooktheory.com/theorytab
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Magenta MidiNet
Inter-set

Intra-set Absolute measure Intra-set Absolute measure
mean STD mean STD mean STD mean STD mean STD

PC 2.897 2.400 7.820 2.647 2.214 1.708 11.300 1.967 4.097 2.490
PC/bar 4.766 1.594 - - 4.866 1.324 - - 4.885 1.446
NC 10.228 9.534 27.310 9.837 6.086 4.596 30.740 5.366 8.940 7.576
NC/bar 6.870 2.903 - - 7.511 1.855 - - 7.359 2.220
PCH 0.490 0.156 - - 0.385 0.127 - - 0.440 0.142
PCH/bar 2.575 0.371 - - 2.591 0.283 - - 2.584 0.326
PCTM 0.441 0.099 - - 0.300 0.049 - - 0.386 0.079
PR 4.796 3.975 12.650 4.383 3.013 2.631 19.600 2.814 7.681 4.052
PI 1.209 1.274 2.940 1.236 1.105 0.812 5.559 0.965 2.773 1.275
IOI 0.257 0.241 0.653 0.248 0.108 0.095 0.531 0.101 0.205 0.212
NLH 0.538 0.223 - - 0.237 0.085 - - 0.420 0.180
NLTM 0.491 0.187 - - 0.271 0.059 - - 0.399 0.152

Table 3: Experimental result for characteristic comparison of generation models (see Sect. 4.2)

lower reliability of the mean value. No clear conclusions

can be drawn as the limited sample size in the listening

test does not allow for more detailed analysis.

Finally, Fig. 4 showcases another visualization of

data characteristics. The PDF of the intra-set distances

among features (PCH, PCTM, NLH, and NLTM) is

shown in a violin plot, an intuitive visualization of PDFs.

The plot echoes the previous argument, where a signifi-
cant higher skewness indicates a less diversified intra-set

behavior and a higher STD indicates a lower reliability

of the similarity measure.

4.3 Experiment 3: Performance evaluation

The final experiment demonstrates the use case of evalu-

ating a generative system. We compare two parametriza-

tions of MidiNet, “Model 1” and “Model 2” [60]. Both
models have identical architecture and share the same

training data. The difference between the models is that

PCH PCTM NLH NLTM
Feature
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Fig. 4: Visualization of model characteristics through

the PDFs of proposed intra-set self-distance (Sect. 4.2)

one model does not use feature matching regularizers

(MidiNet 1) while the other model does (MidiNet 2).

Feature matching is a technique for stabilizing the GANs

by urging the model follow patterns within the training

data more closely [47].

4.3.1 Input datasets

We randomly pick 100 melodies from the training dataset
(see Sect. 4.2: 526 MIDI tabs each with 8 bars), and

generate 100 samples of melodies with 8 bars each with

the two models. To insure an fair comparison, the gen-

eration is performed with the same setup as in Sect. 4.2,

where we provide one bar for priming and let each model
generate 7 continuing bars.

4.3.2 Analysis and discussion

The results of Exp. 3 are shown in Table 4 and Fig. 5.

When comparing the generated melodies with the train-

ing melodies, the model with active feature matching,

MidiNet 2, appears to have a larger OA and smaller

KLD across almost all features. This indicates that the

feature matching is able to deliver the expected improve-
ment. The intra-set distance metrics show that both

models have —compared to the training dataset— a

lower mean and standard deviation in most features.

This implies that both systems lose the variety of the

training samples. Rather than using the metrics for a

quality ranking, we urge the user to use them as index

of variability. They could also be used to catch, e.g., an

extreme case of losing the variety refered to as mode col-

lapse in GANs [47]. In this case, the model is only able

to generate very similar samples although the training

dataset has significant variability.

Fig. 5 intuitively identifies pitch count (PC), note

count (NC), and pitch interval (PI) as the features for
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Training data MidiNet 1 MidiNet 2
Intra-set Intra-set Inter-set Intra-set Inter-set

mean STD mean STD KLD OA mean STD KLD OA

PC 2.527 2.760 2.367 1.805 1.185 0.158 2.214 1.708 0.130 0.541
PC/bar 5.446 2.130 4.551 1.264 0.812 0.042 4.866 1.324 0.572 0.909
NC 12.360 9.954 5.085 3.752 1.058 0.081 6.086 4.596 0.009 0.693
NC/bar 7.804 2.977 5.210 1.520 0.442 0.090 7.511 1.855 0.181 0.916
PCH 0.506 0.169 0.301 0.082 0.012 0.563 0.385 0.127 0.016 0.814
PCH/bar 2.497 0.414 1.546 0.221 0.018 0.319 2.591 0.283 0.025 0.899
PCTM 0.439 0.107 0.263 0.036 0.349 0.277 0.300 0.049 0.172 0.483
PR 4.726 3.935 1.803 1.443 0.502 0.164 3.013 2.631 0.453 0.400
PI 1.062 1.508 0.958 0.767 1.096 0.198 1.105 0.812 0.217 0.443
IOI 0.377 0.403 0.024 0.018 0.141 0.067 0.108 0.095 0.089 0.631
NLH 0.506 0.194 0.174 0.089 0.331 0.187 0.237 0.085 0.024 0.507
NLTM 0.502 0.165 0.208 0.099 0.599 0.201 0.271 0.059 0.112 0.455

Table 4: Experimental result for performance evaluation of generation model (see Sect. 4.3)

which MidiNet 2 outperforms MidiNet 1 (KLD decrease

and OA increase drastically). It also points to features

such as pitch range (PR) and pitch count across bars

(PC/bar) as the dimensions in which both MidiNet

models struggle as indicated by a high KLD. Most im-

portantly, the metrics provide the measurement with re-

spect to human interpretable musical features, allowing

the user to easily pinpoint the strengths and weaknesses

of different system designs.

We can also make one counter-intuitive observation:

the KLD for the pitch class histogram features slightly

increases from MidiNet 1 to MidiNet 2 while the over-

lapped areas (OA) become larger. This reveals the lim-

itations of KLD as visualized in Fig. 6: the PDFs of

the intra-set and inter-set distances of MidiNet 2 move

towards the training data’s intra-set distances, however,

the KLD measure fails to register a performance im-

provement. Since in discrete probability distributions,

the KLD is calculated in an element-wise manner, PDFs
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Fig. 5: Visualizing the model performance by the pro-

posed KLD and OA metrics (Sect. 4.3)

with identical shape (as indicated by similar Kurtosis

and Skewness) but shifted on the x-axis (distinct in

mean value) yield insignificant differences in KLD. As

mentioned in Sect. 3.4.3, the calculation of the OA can

address these limitations of the KLD. On the other

hand, OA can be misleading when the PDFs vary in

their Kurtosis but have similar mean values; in this case,

the KLD is able to indicate the differences.

5 Conclusion

Evaluation of generative models has been falling behind

the system development itself. This is probably due

to the challenges of assessing music aesthetic pieces in

the aspect of summative evaluation [2], where human

subjective tests are typically unavoidable. Given the

challenges of required resources and listening experi-
ment design, we have proposed to address this issue by
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Fig. 6: An example of PDF of the intra-set and inter-set

distances (Sect. 4.3)
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using a formative objective evaluation for generative

music models. This allows for reproducible, reliable, and

comparable objective results. It also allows the analysis

of large amounts of outputs instead of a small set of

hand-picked samples.

The method can be applied to two main tasks, the

analysis of characteristics or the objective evaluation

with interpretable metrics. Given a pair of datasets, fea-

tures rooted in musical domain-knowledge are extracted,

providing absolute measures to the user quantifying the

characteristics of a dataset in various dimensions. When

used as evaluation metric, a relative measurement allows

to look into intra-set and inter-set distances with re-

spect to the training and the output data. The statistic

analysis with respect to both the absolute measure and

the similarity measure serves as a tool for the analysis of

quantifiable dataset characteristics. This analysis allows

the researcher to draw conclusions about the system’s

ability to model a certain musical feature of the training

dataset, as well as to estimate the variability and the

stability of different model designs.

We have released the evaluation framework as an

open source toolbox which implements the demonstrated

evaluation and analysis methods along with visualization

tools. Our future work will include the extension of

the current toolbox with additional dimensions (e.g.,
dynamics) and to expand it towards polyphonic music.

This toolbox is available in an online repository 3.

Conflict of Interest The authors declare that they

have no conflict of interest.

References

1. Agarwala, N., Inoue, Y., Sly, A.: Music composition using
recurrent neural networks (2017)

2. Ariza, C.: The interrogator as critic: The turing test and
the evaluation of generative music systems. Computer
Music Journal 33(2), 48–70 (2009)

3. Asmus, E.P.: Music assessment concepts: A discussion of
assessment concepts and models for student assessment
introduces this special focus issue. Music educators journal
86(2), 19–24 (1999)

4. Babbitt, M.: Twelve-tone invariants as compositional de-
terminants. The Musical Quarterly 46(2), 246–259 (1960)
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