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Abstract

Deep generative models for symbolic music are typi-
cally designed to model temporal dependencies in music
so as to predict the next musical event given previous
events. In many cases, such models are expected to learn
abstract concepts such as harmony, meter, and rhythm
from raw musical data without any additional informa-
tion. In this study, we investigate the effects of explicitly
conditioning deep generative models with musically rel-
evant information. Specifically, we study the effects of
four different conditioning inputs on the performance of
a recurrent monophonic melody generation model. Sev-
eral combinations of these conditioning inputs are used
to train different model variants which are then evaluated
using three objective evaluation paradigms across two
genres of music. The results indicate musically relevant
conditioning significantly improves learning and perfor-
mance, and reveal how this information affects learning
of musical features related to pitch and rhythm. An in-
formal subjective evaluation suggests a corresponding
improvement in the aesthetic quality of generations.

1 Introduction
With recent advances in deep learning, the generation of
symbolic music (i.e., music scores) using deep generative
models has become quite popular. Common practice is to
model music as a sequence and use some kind of Recurrent
Neural Network (RNN) to learn the temporal dependencies
using a corpus of symbolic music data.

In its simplest form, this amounts to training a model to
predict the next note/event given the previous notes/events.
Inputs to these models are typically either discrete tokens or
one-hot vectors extracted from raw symbolic music data with
limited or no explicit musical context. For example, mono-
phonic melody generation systems typically attempt to learn
melody while ignoring any form of explicit harmonic context,
which is an important guide in note selection. While poly-
phonic music generation systems operating on piano roll-like
formats include this information implicitly, the data often
lacks harmonic classification and generalization — explicit
information integral to human composers such as inversion,

This work is licensed under the Creative Commons “Attribution 4.0
International” licence.

voicing, and harmonic function are treated as separate, un-
connected events whose abstractions the model is expected
to learn on its own. Rhythmic considerations like pulse, syn-
copation, and meter that can play a deciding role in how
musical phrases are constructed, are left out. The expectation
in these cases is that the deep networks are powerful enough
to identify patterns in the data and learn to encode abstract
musical concepts such as harmony, meter, and rhythm which
is a considerable challenge even for humans.

In instances where researchers have tried to facilitate learn-
ing by explicitly conditioning models with additional music-
specific information such as chords (Eck and Schmidhuber
2002; Yang, Chou, and Yang 2017) and bar-positions (Had-
jeres and Nielsen 2018; Trieu and Keller 2018), these condi-
tionings have been added to the base architecture as a means
of improving overall performance, rather than tested as inde-
pendent variables that potentially affect particular outcomes.

We aim to bridge this gap by explicitly and independently
representing various musical components and comparing
their effects on the learning and performance of a deep mono-
phonic melody generation system by using them as condi-
tioning inputs. Towards this end, we train and compare the
performance of a model consisting of a pair of RNNs which
independently model note pitch and note duration sequences
conditioned on combinations of musical conditioning inputs.
These inputs include (a) inter-conditioning the generation
of the pitch and duration networks on each other, (b) condi-
tioning with the chordal harmony of current and next notes,
and (c) conditioning with relative bar position. In total, thir-
teen different configurations are tested, one for each possible
combination of conditioning inputs including the case of no
conditioning, and evaluated using three different objective
evaluation metrics using datasets from two different genres
of music: (a) Scottish and Irish folk, and (b) Bebop Jazz.

2 Related Work
2.1 Musical Sequence Modeling Using RNNs
RNNs have been ubiquitously applied to sequence modeling
tasks, and symbolic music generation is no exception (Mozer
1994; Franklin 2004; Eck and Schmidhuber 2002; Colombo
et al. 2016; Chu, Urtasun, and Fidler 2016). Other symbolic
music generative models, such as Variational Auto-Encoders
(VAE) and Generative Adversarial Networks (GAN), have
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also included RNNs as integral building blocks (Roberts et
al. 2018; Yu et al. 2017).

The earliest work on symbolic music generation using
neural networks used an architecture designed to take pitch,
duration, and chord information as input (Mozer 1994). The
model was inspired by psycho-acoustics, towards which hand-
designed embeddings were used for pitches, durations and
chords. Most modern deep learning architectures have since
adopted trainable embedding layers to learn embeddings for
the discrete data symbols based on the raw data.

Eck and Schmidhuber were the first to use a Long-Short
Term Memory (LSTM) based RNN to generate blues chord
progressions with improvised melodies (Eck and Schmidhu-
ber 2002). Their experiments generated polyphonic music,
and used fixed-length bins to discretize time.

2.2 Learning Musical Dependencies
Studies in the past have attempted to learn dependencies be-
tween musical features by either training and then combining
separate networks to learn these features independently or by
applying them as conditioning inputs.

Chu et al. encoded prior musical knowledge in a hierar-
chically structured RNN (Chu, Urtasun, and Fidler 2016) for
generating symbolic scores. They first generate melodies and
then use those to generate chords.

MIDINet (Yang, Chou, and Yang 2017) includes explicit
chord conditioning, assigning a single triad chord per bar.
JazzGAN also makes use of explicit chord conditioning, as-
signing a chord to each half bar in their corpus using 3 distinct
conditioning methods corresponding to 3 distinct rhythm rep-
resentations tested in the authors’ experiments (Trieu and
Keller 2018). Notably, in this work we use an identical chord
representation to that used by JazzGAN (section 3.2).

Colombo et al. proposed an architecture similar to ours,
modeling pitch and duration with two separate RNNs
(Colombo et al. 2016). They conditioned their pitch network
with the previous pitch and note duration and the duration
network with the current pitch and duration.

Johnson et al. similarly developed a model that integrates
separate networks, each of which trains on the same musical
data represented differently (Johnson, Keller, and Weintraut
2017). Each constituent network outputs a distribution over
notes/note choices for each timestep; the weighted combina-
tion of which is considered as the final output of the model.
In addition, the authors condition their model using chordal
harmony and metric information.

Conklin and Witten’s Multiple Viewpoint Systems for Mu-
sic Prediction derives several sequences of viewpoints, or
musical attribute sets, from a sequence of notes in a melody
and learns a model for each viewpoint independently. The
predictions of different viewpoints are combined later into a
single final prediction (Conklin and Witten 1995). Cherla et
al. developed a Restricted Boltzmann Machine model based
on this approach, predicting pitch events using two view-
points — note pitch and note duration (Cherla et al. 2013).

Mogren’s C-RNN-GAN learns to jointly predict real-
valued tuples of frequency, length, intensity and timing,
though does not include any chord conditioning (Mogren
2016).

MuseGAN, a system for multi-track music generation, also
attempts to learn dependencies between different parts of a
song (Dong et al. 2018). The input tracks are represented as
piano roll MIDI sequences, and a convolutional GAN based
architecture is used to learn dependencies between them in
three different configurations.

2.3 Data representation for symbolic music
There exist several choices for representing symbolic mu-
sic data. For pitches, the two most popular approaches are:
(a) One-hot vectors denoting distinct pitches (Colombo et
al. 2016), or (b) Embeddings from a learnable embedding
layer that maps pitches to lower dimensional vectors (Roberts
et al. 2018; Hadjeres, Pachet, and Nielsen 2017). The latter
is inspired by word2vec embeddings (Mikolov et al. 2013),
which have been used extensively by the natural language
processing and machine translation communities.

The most common approach to representing note duration
is to split the musical score into fixed-length ticks and encode
each tick as an event or set of events (e.g. note held, rest,
song end) (Roberts et al. 2018; Hadjeres, Pachet, and Nielsen
2017). While this approach helps maintain a timing-grid and
has been used successfully in many studies, it has limita-
tions. For instance, most current models using this approach
ignore durations shorter than a sixteenth note. This is be-
cause representing a finer time resolution supporting shorter
notes or uneven time divisions (e.g., triplets) would increase
sequence lengths significantly, which makes learning with
RNNs harder.

3 Method
In this study, we aim to analyze the effects of different ex-
plicit conditioning inputs on the performance of a recurrent
monophonic melody generation system. Specifically, we are
interested in how these conditioning inputs impact the pre-
diction of the next note, i.e., predicting the pitch Pt and the
duration Dt of the tth note.

3.1 Approach
Note pitch and note duration sequences of monophonic
melodies are modelled with two parallel LSTM-RNN net-
works, one for pitch and one for duration. In the experiments,
each of these networks is conditioned with various condi-
tioning inputs, the combinations of which define what will
hereafter be refered to as conditioning configurations. Before
delving deeper into the model architecture and configurations,
the data representation used is described.

3.2 Data Representation
Each monophonic melody M is represented as a sequence
of pitch and duration tokens corresponding to itsconstituent
notes. Several additional sequences are also constructed from
the raw data as described below (see Fig. 1 for an illustration):
(a) Pitch Sequence, P : Pitch tokens comprise of 88 notes of

a standard piano keyboard and a special token for rests.
(b) Duration Sequence, D: Duration tokens are assigned

based on a dictionary which maps each of 19 possible
note durations to a duration token.
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P = {rest, G4, Bb4, D5, rest, C5, Bb4, C5, A4, A4, F4, C4, Eb4, G4}
D = {♪,  ♪,  ♪,  ♪,  ♪,  ♩,  ♪,  ♪,  ♪,  ♪,  ♬,  ♬,  ♪,  ♩.} 
B = {0, 12, 24, 36, 48, 60, 84, 0, 12, 24, 36, 42, 48, 60}
C = {{G,[1,0,0,1,0,0,0,1,0,0,0,0]},...7 times, {F,[1,0,0,0,1,0,0,1,0,0,0,0]},...7 times}

Gm Fmaj

Figure 1: Illustration of data representation scheme. P : pitch
token sequence, D: duration token sequence, B: relative bar-
position sequence, and C: harmony sequence

(c) Harmony Sequence, C: For harmony, the chord type
is encoded using a 12-dimensional binary vector with
the active pitch classes in the chord. The root pitch is
encoded using a separate token.

(d) Bar-Position Sequence, B: Tokens indicating the rel-
ative position of each note within a bar. Each beat is
divided into 24 equal divisions (this ensures that we can
adequately represent triplets) resulting in 96 tokens.

3.3 Model Architecture
The base model architecture consists of two parallel LSTM-
RNN based networks, denoted as a) Pitch Network and b) Du-
ration Network, which model the pitch sequence P and the
duration sequence D, respectively.

The models are trained to maximize the conditional log-
likelihood for the current pitch and duration, given informa-
tion about the previous notes. For the Pitch network, this
translates to

max
θP

∑
t

logprob(Pt|I<t), t ∈ [0, L− 1] (1)

where Pt is the pitch of the tth note, I<t is information about
all notes that have occurred before the tth note, L is the
number of notes, θP represents the parameters of the Pitch
network. Similarly, for the Duration network:

max
θD

∑
t

logprob(Dt|I<t), t ∈ [0, L− 1] (2)

where Dt is the duration of the tth note, θD represents the
paramters of the Duration network. All other symbols retain
the same meaning as in Equation 1.

Information for the tth note is denoted by It and is con-
structed by concatenating embeddings computed for each
input in a given conditioning configuration. A list of the
conditioning configurations used is provided in Table 1.

The pitch embeddings pt, duration embeddings dt and the
bar-position embeddings bt are computed by processing the
elements in P , D and B, respectively, through their respec-
tive embedding layers. For chord embeddings ct and next
chord embeddings nt, the root token of the chords are passed
through an embedding layer, while the pitch class vectors are
encoded using a set of fully connected layers. The outputs
of these layers are then concatenated, and subsequently pro-
cessed together by a second set of fully connected layers to
obtain the final chord embeddings.

Conditioning Configuration Abbreviation

No conditioning No-Cond
Inter Conditioning I
Chord Conditioning C
Next Chord Conditioning N
Barpos Conditioning B
Chord + Inter CI
Chord + Next Chord CN
Chord + Barpos CB
Inter + Barpos IB
Chord + Next Chord + Inter CNI
Chord + Next Chord + Barpos CNB
Chord + Inter + Barpos CIB
Chord + Next Chord + Inter + Barpos CNIB

Table 1: List of all conditioning configurations. Each condi-
tioning is implemented by concatenating one/more additional
embeddings to the input of the networks.

In each conditioning configuration, embeddings for the
used conditioning inputs are concatenated with the pitch and
duration embeddings to form the information vector It. For
example, in the No-Cond configuration of the Pitch network,
It will only contain the pitch embedding, whereas in the CI
configuration, It will be the concatenation of pitch, current
chord, and duration embeddings.
It is then encoded by a set of fully connected layers before

being passed through the LSTM-RNN. The output of the
LSTM-RNN is decoded by a second set of fully connected
layers and activations, followed by a Log-Softmax layer. An
overview of the model architecture (CNIB configuration) is
shown in Fig. 2. All other configurations are a subset of this
architecture, i.e, they can be derived by selectively removing
certain connections prior to the concatenation operation.

4 Experiments
A total of 13 conditioning configurations were used to train
models using each of our two datasets of chord annotated
lead sheets. All models were implemented and trained us-
ing PyTorch. All code including the training and evaluation
scripts is available online.1

4.1 Datasets
Training and testing of the models is performed using two
monophonic melodic datasets.

FolkDB FolkDB comprises of chord-annotated lead sheets
in the Scottish and Irish folk tradition. The original dataset2
is converted from .abc format to MusicXML. Only melodies
with 4/4 time signature and chord annotations were used,
resulting in a total of 254 melodies.

BebopDB For the purposes of this study, we created a new
dataset of well annotated Bebop Jazz lead sheets in Mu-
sicXML format. Each lead sheet contains a monophonic

1https://github.com/bgenchel/Explicitly-Conditioning-Melody-
Generation

2https://github.com/IraKorshunova/folk-rnn/tree/master/data,
last accessed: 18th Feb 2019
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Figure 2: Model architecture overview: This figure displays the CNIB configuration of the model, in which all conditioning inputs
are all applied simultaneously. Other configurations can be derived from this by selectively removing a subset of connections
prior to the embedding concatenation operation. No information from the current timestep is shared between the LSTM-RNNs.

melody with chord annotations, where the chord annotations
are placed with specific timing relative to a bar.

At present, the dataset consists of 147 lead sheets from 61
composers. The dataset contains 275 unique chords and 20
unique chord types (e.g., major7, sus4). The longest song in
the dataset contains 96 bars, while the shortest contains 12;
songs average around 35 bars. The largest number of notes in
a bar is 24, and the minimum is 1, with an average of around
6 notes per bar.

Data Pre-processing All melodies are transposed to all
root notes by shifting each piece up 5 semi-tones and down
6 semi-tones. This results in 3042 songs for FolkDB and
1617 songs for BebopDB. Transposing the songs, as opposed
to shifting each song to the same key, allows the models to
better learn songs with key changes.

4.2 Model Specification
Embedding dimensions of 8, 4, 2, and 8 were used for the
pitch, duration, chord root, and bar position tokens, respec-
tively. The chord pitch class vector is encoded using linear
layers to a dimension of 4. The concatenation of chord root
embedding and chord pitch class encoding is further encoded
to a dimension of 8.

Linear layers appear in pairs, with the exception of single
linear layers feeding into the LSTM-RNNs. The output size
of the first layer is the arithmetic mean of its input and the
output of the second layer. The layers are separated by a
batch-normalization layer (Ioffe and Szegedy 2015) followed
by a ReLU activation. Batch-Norm and ReLU layers also
follow the single linear layer preceding the LSTM.

Each model uses uni-directional, 2-layer LSTM-RNNs
for which both the input size and hidden size are 256-
dimensional. The output of the Pitch LSTM-RNN is decoded
to an 89-dimensional vector, while the Duration LSTM-RNN

output is decoded to a 19-dimensional vector. Each decoding
is fed to a Log-Softmax layer.

4.3 Training Specification

Each model is trained by feeding in sub-sequences of 64
notes (In : In+64) and backpropagating the Negative Log-
Likelihood Loss (NLL) taken between their outputs and the
following sub-sequence of 64 notes from the ground truth
data (In+1 : In+65). For training, overlapping windows of
length 64 are extracted from each song in the datasets with a
hop-size of 1.

Both Pitch and Duration networks are trained for 30
epochs using a batch-size of 64. We found 30 epochs suffi-
cient for each configuration to converge without overfitting,
and thus, used it as an early stopping point. Datasets are di-
vided into training and validation sets using an 80/20% split.
We use the AMSGrad variant (Reddi, Kale, and Kumar 2018)
of the Adam optimizer (Kingma and Ba 2015) with a learning
rate of 1e− 3 Models are regularized by applying dropout to
the LSTM layers with 0.2 probability.

5 Evaluation
The performance of the configurations is evaluated using
three separate objective metrics: (a) NLL loss achieved on the
validation set, (b) performance on the MGEval framework
(Yang and Lerch 2018), and (c) BLEU score (Papineni et
al. 2002), followed by an informal subjective appraisal of
melodies generated by each configuration.

The first metric, NLL, is the most common metric to mea-
sure the predictive capability of a generative model and its
overall efficiency. The other two, though used to a lesser
extent, measure the degree to which the generated melodies
comply with the statistics of the training data.
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Validation NLL FolkDB BebopDB

Configuration Pitch Duration Pitch Duration

No-Cond 0.373 0.143 0.381 0.136
I 0.303 0.061 0.275 0.065
C 0.317 0.094 0.313 0.085
N 0.319 0.083 0.318 0.075
B 0.277 0.117 0.276 0.112
CI 0.264 0.055 0.241 0.056
CN 0.313 0.075 0.304 0.074
CB 0.240 0.083 0.242 0.073
IB 0.307 0.053 0.274 0.057
CNI 0.248 0.052 0.226 0.050
CNB 0.212 0.067 0.239 0.065
CIB 0.217 0.048 0.198 0.048
CNIB 0.206 0.047 0.190 0.045

Table 2: Best Validation NLL (lower is better) results dur-
ing training for the Pitch and Duration networks of different
conditioning configurations. Adding different conditioning in-
puts gradually improves NLL. Adding barposition (B) works
better for Pitch networks, inter-conditioning (I) works better
for Duration networks. Bold items denote the top 3.

5.1 NLL Loss
The conditioning configurations are trained to predict the
pitch and duration of the current note given information about
previous notes. For comparison, we look at the lowest NLL
loss obtained on the validation set by each configuration.
Table 2 summarizes the results for all different configurations.

Discussion The results suggest that the addition of greater
numbers of conditioning inputs improves the predictive per-
formance of both Pitch and Duration networks on both
datasets. This is further supported by a comparison of vali-
dation loss curves across training epochs as shown in Fig. 3,
where it is clear that more conditioned models converge to
lower values faster. This is expected, as the network is pro-
vided with more musically relevant context which dictates
the flow of the melody. Some observations are:

Epoch Number
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N

LL

0.10

0.20

0.30

0.40
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5 10 15 20 25 30

No-Cond C CI CNI CNIB

Figure 3: Validation NLL curves for 5 different configura-
tions for the Pitch network trained on BebopDB. Adding
conditioning inputs improves speed (faster convergence) and
performance (lower value) during training.

(a) Adding bar position B significantly improves the perfor-
mance of Pitch networks on this metric for both datasets.
This indicates that explicit encoding of this information
facilitates better learning relative to implicitly specify-
ing this information by providing only note durations as
input. It is interesting to note that bar position does not
improve the performance of Duration networks when
compared to the effects of other inputs such as previous
pitch (inter) I, chords C, or next chords N.

(b) Inter-conditioning the Duration network improves its
performance significantly across both datasets on this
metric. This indicates that predicting the duration of the
current note relies more heavily on the previous pitch
than the current chord, next chord, or bar position.

(c) Providing information regarding the current and next
chords without other conditioning inputs (CN case)
does not appear to improve performance on this met-
ric, indicating that information regarding the previous
pitches/durations and bar positions are possibly more
important for learning and prediction.

5.2 MGEval
The MGEval (Music Generation Evaluation) toolbox was de-
signed by Yang and Lerch for objective evaluation of music
generation systems (Yang and Lerch 2018). It uses several
pitch and duration-based features to measure the degree to
which the generated music is able to match the statistics of
the training data. The features are modeled as probability
distributions. The performance of a generative model is eval-
uated by computing the distance between these probability
distributions across the training data and generated melodies
using KL-divergence.

This toolbox is used to compare the performance of each
conditioning configuration and to further analyze the impact
of each condition (I, C, N, and B). We first generate new
melodies using our conditioning configurations for each non-
transposed song in both datasets. Melodies are generated
by feeding an initial seed of 10 notes to the trained models
and then recurrently sampling pitch/duration values from the
output Softmax distributions. For models requiring chords,
we use the chord progressions from the lead sheets. A set
of 11 features, sub-categorized into pitch and duration types,
is computed (see Table 3) for both the generated melodies
and the original melodies in the datasets. The KL-Divergence
between the predicted distribution and inter-set distribution
is used as the performance metric.

Table 4 shows the performance of two such features. Since
there are a large number of features and conditioning config-
urations, we use an aggregation technique to summarize the
complete set of results.3 For each feature, the best perform-
ing configuration (lowest KL-divergence) is given a score
of 1. If there are several configurations with very close KL-
divergences (within one standard deviation of the distribu-
tion), the score is equally split. Next, the scores are allotted to
the individual conditioning inputs based on the conditioning
configuration. For instance, for the CNI configuration, the
score is split equally amongst C, N and I. The scores for each

3https://bgenchel.github.io/ecmg/results
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Feature
Type

Feature Name

Pitch-
based

Pitch Count (PC), Pitch Count/Bar (PC/bar), Pitch
Class Histogram (PCH), Pitch Class Transition Ma-
trix (PCTM), Pitch Range (PR), average Pitch In-
terval (PI)

Duration-
based

average Inter-Onset Interval (IOI), Note Length
Histogram (NLH), Note Length Transition Ma-
trix (NLTM), Note Count (NC), Note Count/Bar
(NC/Bar)

Table 3: List of features used from the MGEval Toolbox.
More information about these features and their computation
process is given in the original paper (Yang and Lerch 2018).

KL-Divergence FolkDB BebopDB

Configuration PR NLH PR NLH
No-Cond 0.019 1.652 0.027 2.154
I 0.035 2.297 0.029 4.750
C 0.046 2.212 0.047 2.452
N 0.050 2.696 0.048 3.717
B 0.052 2.799 0.060 2.731
CI 0.094 2.671 0.046 5.347
CN 0.059 3.063 0.061 3.588
CB 0.072 2.273 0.023 2.409
IB 0.073 2.337 0.022 4.471
CNI 0.090 3.368 0.038 5.584
CNB 0.057 2.792 0.050 2.914
CIB 0.033 1.439 0.030 6.101
CNIB 0.056 1.883 0.041 5.965

Table 4: Predicted-set to inter-set KL-divergence (lower is bet-
ter) for two MGEval features. PR: Pitch Range, NLH: Note
Length Histogram. Bold items are best performers for that
feature (within one standard deviation of the top performer).

conditioning input are then added across features within each
feature sub-category and normalized to a sum of one. The
final normalized scores can be interpreted as the probabil-
ity that a particular conditioning performs better than others.
These normalized distributions are presented in Fig. 4.

Discussions On an average, conditioning inputs improve
the performance on the MGEval features. However, different
conditioning inputs affect the different feature sub-categories
differently. Inter, chord and bar-position clearly perform bet-
ter for pitch-based features. This is in line with our observa-
tions for the NLL loss. There are, however, no clear winners
for the duration based features. For FolkDB, next-chord per-
forms the best, while for BebopDB, chord and bar position
perform better. Interestingly, for FolkDB, the no-cond case
scores the highest for duration-based features. This might be
due to the simple rhythmic patterns in that genre.

While these results are interesting, there are also a few
concerns. Most prominently, it is assumed that there is an
equal contribution from all inputs towards the performance of
configuration. To further verify, all scores were normalized
for all metrics to have zero mean and unit varience, and
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Figure 4: Aggregated score distribution (higher is better)
across MGEval sub-categories for each conditioning input

t-tests were conducted for each condition for both pitch-
based and rhythm-based features. These tests showed that
the results are statistically significant for inter, chord, and
next chord conditioning in BebopDB and for chord and next
chord conditioning in FolkDB. It is also interesting to note
that Table 4 does not display the same trend as Table 2, in
which improvement was clearly correlated with increased
conditioning. Additionally, the relatively weak performance
of inter-conditioning for duration-based features runs counter
to the observation of the NLL losses. This indicates that while
model training improves with different conditioning inputs,
the musical properties of the generated melodies with respect
to the training data do not necessarily improve.

5.3 BLEU Score

The BLEU score, a measure of similarity between two cor-
puses of text, was originally designed to give an objective
evaluation for machine translation tasks (Papineni et al. 2002).
It is calculated as the geometric mean of the counts of match-
ing n-grams between the generated and target corpuses. A
perfect score of 1 is attained only when the two corpuses
are exactly the same, which is almost impossible even for
humans to achieve on a generative task. Even though the
utility of this metric for generative tasks is debatable, BLEU
score can still be considered a useful objective metric in the
absence of better objective metrics to quantify creativity and
musicality. Therefore, it has been used to evaluate music
generation systems (Yu et al. 2017).

We compute corpus-level BLEU scores (shown in Table 5)
using 1, 2, 3 and 4-gram sequences for the generated melodies
for each configuration. The melody generation process is the
same as that followed for the MGEval case.
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BLEU Score FolkDB BebopDB

Configuration Pitch Duration Pitch Duration

No-Cond 0.267 0.874 0.098 0.875
I 0.269 0.717 0.101 0.568
C 0.297 0.782 0.133 0.688
N 0.311 0.796 0.112 0.663
B 0.242 0.763 0.112 0.696
CI 0.278 0.685 0.130 0.569
CN 0.326 0.779 0.153 0.666
CB 0.289 0.784 0.121 0.654
IB 0.253 0.689 0.129 0.607
CNI 0.326 0.684 0.157 0.572
CNB 0.335 0.794 0.146 0.638
CIB 0.283 0.694 0.132 0.593
CNIB 0.317 0.688 0.128 0.566

Table 5: Corpus Level BLEU Scores (higher is better) for
Pitch and Duration networks for different conditioning con-
figurations and datasets. Bold items denote the top 3.

Discussion Between the Pitch and the Duration networks,
the scores are more intuitively understandable for the former
case. For Pitch networks, the highest scores are achieved by
configurations which include chords, either current or next.
This indicates that adding chords as conditioning inputs helps
the network to better reproduce pitch n-grams.

For the Duration networks, No-Cond performs the best.
This is quite surprising since this configuration only relies
on the duration of previous notes. The second and third high-
est scores come from chord and bar position conditioning.
The FolkDB models work better with next chord, while the
BebopDB models perform better with the current chord. In-
terestingly, once again, the lowest scores for duration seem
to correspond with inter-conditioning.

The results, especially those for Duration networks, run
counter to the NLL loss results reported above. However, this
tallies with observations from the MGEVal framework and
warrants further investigation.

5.4 Subjective Appraisal of Sample Melodies
In order to get a sense of how well the objective measures
correspond to our aesthetic experience, we generate a few
melodies following the harmony and seed selected randomly
from a few lead sheets. While there were some similarities
between generations of FolkDB and BebopDB models based
on the conditioning configurations, due to musical differences
between the genres, some were harder to judge than others.

Models which lack any kind of chord conditioning were
in general able to stay in key for both genres for some time.
As Folk songs tend to stay within the same key throughout,
chord conditioning did not seem necessary for consonance.
For Bebop generations however, configurations that lacked
chord conditioning, eventually fell out of key and were unable
to find their way back.

For Folk generations, the addition of inter-conditioning
seemed to induce specific bad habits, such as repeatedly re-
turning to a particular note, or making repeated large jumps
to note B4. These were mitigated in combination with chord

conditioning, which in general led to higher quality gener-
ations. For Bebop generations, we saw no such effect for
inter-conditioning in isolation, however, we did observe this
synergy when combined with chord conditioning.

Barpos conditioning appeared to enhance rhythmic variety
in Bebop generations and increase the duration for which
generations stayed in key. The same was not observed for
Folk generations. Chord conditioning produced the most
noticeable effect for both genres, significantly increasing har-
monicity for Bebop generations and improving the musical-
ity of Folk generations. Chord-conditioned Folk generations
seemed to include a greater number of intervals such as ma-
jor and minor thirds and well-placed fourths, which we felt
added more emotion and musicality. Without chord condition-
ing, Folk generations tended to over-use consecutive whole
tone (major 2nd) intervals which sounded monotonous. In
addition, chord conditioning seemed to have a strong positive
impact on rhythmic phrasing and variety for both genres.

Chord conditioning seemed to have a much more positive
impact on Bebop generations than next chord conditioning,
which sometimes appeared to cause the model to step out
of key, perhaps in anticipation of the next chord. For Folk
generations, chord and next chord conditioning appeared to
similarly improve performance.

Despite the observed effects listed above, we still found
that CNIB and CIB produced the most aesthetically pleas-
ing melodies over all, indicating positive synergy between
conditionings even when they appear detrimental in isola-
tion. CI, CNI, and CNB were close seconds in quality. These
observations are consistent with results from the objective
metrics, indicating the importance of harmony on both pitch
and rhythmicity, as well as its synergy with inter-conditioning
and to a lesser extent bar position. Selected score samples are
displayed in Figure 5. We provide audio for these generated
melodies for the reader to make their own judgments4.

Figure 5: Generations over the first 4 bars of ”Donna Lee” by
Charlie Parker for (from top to bottom) I, CI, and CIB.

6 Conclusion
We present a case study designed to evaluate and analyze
the effects of explicit musical conditioning on monophonic
melody generation. We describe thirteen different condition-
ing configurations of four musical conditioning inputs (inter-
conditioning between pitch and duration sequences, current
chord, next chord, and bar position), each of which is used to
train an LSTM-RNN based model on two datasets of chord-
labeled melodies. We evaluate the performance of models

4https://bgenchel.github.io/ecmg/results
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in each conditioning configuration with three objective mea-
sures, providing insight into how these conditioning inputs
effect overall learning rate and accuracy and how they facili-
tate the model in learning musical features from the data. In
addition, we also provide a subjective appraisal of the aes-
thetic qualitty of the melodies generated by models trained
using different conditioning configurations.

The results of this study suggest that harmonic condition-
ing is important not just for pitch prediction, but for duration
prediction as well. More generally, it provides some insight
into the relative usefulness of each of the conditioning in-
puts for learning pitch and rhythm-based features. We also
discover that while some features may appear ineffective
or even detrimental when applied individually, or in certain
combinations, they may still be useful when applied in other
combinations. In addition, we show that the effectiveness of
musical conditioning is also dependent on the type of data
used; though there were commonalities in how conditioning
effected generations for both Folk-trained and Bebop-trained
models, there were significant differences as well.

In the future, we aim to conduct a subjective listening test
to formally determine if the results of our objective metrics
line up with the aesthetic perception, as well as test a greater
number of musical conditioning factors, some of which relate
to long term structure.
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