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Abstract
In music using neural networks to learn effective
feature spaces, or embeddings, that capture useful
characteristics has been demonstrated in the sym-
bolic and audio domains. In this work, we com-
pare the symbolic and audio domains, attempting
to identify the benefits of each, and whether incor-
porating both of the representations during learn-
ing has utility. We use a self-supervising siamese
network to learn a low-dimensional representa-
tion of three second music clips and evaluate the
learned features on their ability to perform a va-
riety of music tasks. We use a polyphonic piano-
performance dataset and directly compare the per-
formance on these tasks with embeddings derived
from synthesized audio and the corresponding
symbolic representations.

1. Introduction
A Large body of research in music information retrieval
(MIR) aims to reduce the dimensionality of musical data
and categorize it into higher-level descriptors such as genre,
composer, or tempo. In the past, this was achieved by
extracting a low-dimensional intermediate representation
from audio involving spectral, dynamic, and temporal hand-
crafted features (Tzanetakis & Cook, 2002; Casey et al.,
2008; Mandel & Ellis, 2005) followed by classification.

The dimensionality reduction pipeline has now been re-
placed by the layers of deep neural networks (DNN), where
low-dimensional representations are directly learned from
labeled data. DNNs are the state-of-the-art in several tasks
(Han et al., 2017; Choi et al., 2017a; Hawthorne et al., 2018).

However, these approaches rely on labeled datasets prevent-
ing models from working with, for example, new styles of
music unrepresented in the dataset. Examples of approaches
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Figure 1. Block Diagram for Proposed Model

tackling this challenge are transfer learning (Van Den Oord
et al., 2014; Choi et al., 2017b) and student-teacher learn-
ing (Wu & Lerch, 2017). In the symbolic music domain,
learning a low-dimensional feature or ‘embedding’ space
using unlabeled data and autoencoders has been explored
by Bretan et al. (2017). In our work, we evaluate whether
such an approach may be applied to learn effective feature
spaces using unlabeled musical audio by comparing models
trained with audio and symbolic data.

The benefits of models capable of extracting meaningful
features from audio are: (i) less dependence on labeled data
for new tasks, (ii) applicability to generative music tasks
in the audio domain, and (iii) ability to design interactive
music systems utilizing audio as opposed to symbolic data.

2. Proposed Method
We compare audio and symbolic music inputs for learning
effective feature spaces. To the best of our knowledge, a
direct comparison of input representations better suited for
feature learning has not been performed. We compare by
training embedding spaces with audio and symbolic data and
evaluating them. Siamese convnets are trained to minimize
the distance between embeddings of neighboring clips using
a custom loss function, as depicted in Figure 1.

For direct comparison, we use MIDI files to obtain a sym-
bolic representation as well as to synthesize audio using
fluidsynth. We use a set of MIDI files of performances
of classical compositions from 25 composers as used in
(Bretan et al., 2017) as well as improvised piano perfor-
mances on 92 jazz standards from the Real Book. We use
3 s clips as inputs. For the audio representation, we use log
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Rank@100 Composer Key Signature Tempo Note Density
AM GM microF macroF microF macroF 8% acc 4% acc MAE R2

MEL MEL 7.966 3.77 0.330 0.178 0.264 0.183 0.265 0.127 6.799 0.613
SYM SYM 13.52 6.18 0.228 0.085 0.340 0.317 0.172 0.075 11.14 0.134
MEL SYM 12.30 5.52 0.228 0.089 0.384 0.353 0.189 0.095 7.467 0.540
SYM MEL 12.35 5.53 0.255 0.099 0.383 0.350 0.169 0.086 8.328 0.458

Table 1. Results for embedding spaces trained as per Sect. 3. Bold indicates statistically significant best performance (Bonferroni
correction leads to p < 0.0083). Multiple bold numbers in a column indicate that the corresponding models are not significantly different.

mel-spectrograms with 96 mel-bands and for the symbolic
representation, we use piano-rolls with 8 octaves.

Each clip’s mel-spectrogram Mi and piano-roll Si are
paired with its neighboring clip’s mel-spectrogram Mi+1

and piano-roll Si+1. These pairs are inputs to the network.

2.1. Semantic Relevance Loss Function

Given a pair of semantically relevant/similar vectors M̄ and
N̄ and a set of four vectors D containing N̄ along with three
randomly chosen irrelevant/dissimilar vectors, the semantic
relevance of N̄ and M̄ is computed as:

P (N̄ |M̄) =
exp(sim(M̄, N̄))∑
d̄∈D exp(sim(M̄, d̄))

, (1)

where sim is cosine similarity. |D| = 4 controls how many
dissimilar vectors are used. During the forward pass, a batch
of neighboring clips are passed through the network. The
pairs of 128-dimensional embeddings obtained correspond
to M̄ and N̄ in Eq. (1). Next, |D| − 1 dissimilar embed-
ding vectors are picked randomly from the remaining batch
items. Finally, we use Adam optimizer (Kingma & Ba,
2014) to minimize: −log

∏
M̄,N̄ P (N̄ |M̄) where M̄, N̄ are

the embeddings of all the neighboring pairs of clips in the
dataset. This loss function has also been applied to learning
embeddings for symbolic music (Bretan et al., 2017).

3. Evaluation
We perform four experiments to compare the performance
of models trained with audio and symbolic representations.

1. Mel-spectrogram (MEL MEL): Mi and Mi+1 input
2. Piano-roll (SYM SYM): Si and Si+1 input
3. Mix inputs 1 (MEL SYM): Mi and Si+1 input. Dur-

ing testing, mel-spectrogram is used for embedding.
4. Mix inputs 2 (SYM MEL): Si and Mi+1 input. Dur-

ing testing, piano-roll is used for embedding.

We test mixed input representations to check if maximizing
relevance using a different representation helps the network
learn better features. For mixed experiments, the siamese
network does not share weights between the sub-networks.

3.1. Metrics

• Ranking: For each test clip, we pick its neighboring
clip and 99 random test clips. We compute cosine
distances between the embeddings of the test clip and
the 100 selected clips. Rank of the neighboring clip
is the rank@100. We report arithmetic and geometric
mean rank@100. Neighboring clips should be nearest
neighbors in the embedding space as well.

• Musical Tasks: We evaluate the performance of the
models on classification and regression tasks involving
musical characteristics. We extract embeddings for the
training and test set using the four models and train
fully connected networks with two hidden layers for
each task. The tasks are: 25-way composer classifica-
tion, 12-way key signature classification, tempo esti-
mation and note-density estimation. We use standard
metrics for these tasks such as F1-scores for classifi-
cation, mean absolute error (MAE) and R-squared for
regression. For tempo estimation we compute accuracy
with 4% and 8% tolerance.

4. Results and Conclusion
Based on the results in Table 1, the general trend we observe
is that models trained using mel-spectrogram outperform
those trained only with symbolic data. Models trained with
only mel-spectrogram outperform the other models in all
metrics except key signature classification. An explanation
is the difficulty in resolving pitch in a mel-spectrogram
due to harmonics overlapping, compared to piano-roll. The
performance of all models is poor for tempo estimation
possibly due to the short length of input clips.

To study the impact of our results, possible future directions
are as follows: (i) comparing our method of self-supervised
feature learning with other methods such as autoencoders,
(ii) training with real-world, polyphonic music, and (iii) ex-
ploring the benefits of using synthesized audio instead of
symbolic music for generative music systems.

Finally, while there is still potential for improvement in
supervised learning for MIR, with this work we hope to
move further in the direction of leveraging vast amounts of
unlabeled data to solve problems in MIR and generation.
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