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Abstract
Deep generative models for music are often re-
strictive since they do not allow users any mean-
ingful control over the generated music. To
address this issue, we propose a novel latent
space regularization technique which is capable
of structuring the latent space of a deep gener-
ative model by encoding musically meaningful
attributes along specific dimensions of the latent
space. This, in turn, can provide users with ex-
plicit control over these attributes during infer-
ence and thereby, help design intuitive musical
interfaces to enhance creative workflows.

1. Introduction
In recent years, deep learning has emerged as the tool-of-
choice for music generation models (Fiebrink et al., 2016;
Briot & Pachet, 2018). While many of these deep generative
models have been successfully applied to several different
music generation tasks, e.g., monophonic music generation
(Colombo et al., 2016; Sturm et al., 2016), polyphonic mu-
sic generation (Boulanger-Lewandowski et al., 2012; Yang
et al., 2017), creating musical renditions with expressive
timing and dynamics (Huang et al., 2019; Oore et al., 2018),
they are often found lacking in two critical aspects: control
and interactivity (Briot & Pachet, 2018).

Latent representation-based models, such as Variational
Auto-Encoders (VAE) (Kingma & Welling, 2014), have the
potential to address this limitation as they are able to encode
hidden attributes of the data (Carter & Nielsen, 2017). This
is evident from properties such as attribute vectors (Mikolov
et al., 2013; Roberts et al., 2018b) and semantic interpo-
lations (Roberts et al., 2018a). Thus, improving the in-
terpretability of latent spaces has been an active area of
research. Methods to enforce semantic structure on the la-
tent spaces have either used regularization methods (Lample
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et al., 2017; Hadjeres et al., 2017; Donahue et al., 2018), or
transformation techniques (Engel et al., 2017; Adel et al.,
2018). However, these have mostly been restricted to image
generation tasks. The geodesic latent space regularization
method proposed by Hadjeres et al. (2017) achieved some
success for music data by encoding an attribute along a sin-
gle dimension of the latent space. However, this method has
not been tested for multiple attributes together and requires
hyperparameter tuning for different attributes.

We propose a novel latent space regularization technique
to improve the interpretability of latent spaces with respect
to musically meaningful attributes understandable by hu-
mans. The proposed method can encode selected musical
attributes along specific dimensions of the latent space. This
enables the users to interactively control these attributes
during inference time.

2. Method
The objective is to encode an attribute a along a dimension
r of the latent space such that, as we traverse along r, the
attribute value a of the generated music increases. For
instance, if the attribute represents rhythmic complexity,
sampling latent vectors with high values of r should result
in music with high rhythmic complexity and vice versa.
Mathematically, if axi > axj , where xi and xj are two data-
points generated using latent vectors zi and zj , then zri > zrj
should hold for any arbitrary i and j. Here z :

{
zk

}
, k ∈

[1,D] is a vector in a D-dimensional latent space.

This is accomplished by adding an attribute-specific regular-
ization loss to the VAE training objective. To compute this
loss, firstly, an attribute distance matrix Da is computed for
all examples in a training mini-batch: Da(i, j) = axi

−axj
,

where i, j ∈ [1, N ], N is the number of examples in the
mini-batch. Next, a similar distance matrix Dr is com-
puted for the regularized dimension r of the latent vectors:
Dr(i, j) = zri − zrj . The regularization loss is finally for-
mulated as: Lr,a = MSE(tanh (Dr) − sgn (Da)), where
MSE (·) is the mean square error, tanh (·) is the hyperbolic
tangent function, and sgn (·) is the sign function. This for-
mulation forces the values of the regularized dimension to
have a monotonic relationship with attribute values while
ensuring differentiability with respect to the latent vectors
(and consequently the VAE-encoder parameters).
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Figure 1. Attribute distribution for latent vectors obtained by en-
coding data from a held-out test set. The top row shows rhythmic
complexity, bottom row shows pitch range. Sub-plots with a red
border were regularized for the particular attribute. The x-axis
denotes the value of the 1st dimension while the y-axis denotes
the value of the 3rd dimension. Zoom in for higher resolution.

3. Experiments
Experiments were conducted using the proposed regulariza-
tion technique for two attributes: rhythmic complexity and
pitch range. For rhythmic complexity, Toussaint’s metrical
complexity measure was used (2002). This has been shown
to correlate with human perception of rhythmic complexity
(Thul & Toussaint, 2008). Pitch range was computed by
taking the difference between the maximum and minimum
MIDI pitch values of notes normalized by the range of notes.

Hierarchical VAE models (Roberts et al., 2018b) were
trained on a dataset of monpphonic folk melodies in the
symbolic domain (Sturm et al., 2016) to generate single
measures of music. Models RHY and PR were trained with
rhythmic complexity regularized along the 1st dimension
and pitch range regularized along the 3rd dimension, respec-
tively. A third model RHY-PR was trained which jointly
regularized both attributes along these dimensions. For com-
parison, a fourth model Base was trained with no regular-
ization. Other training parameters (e.g., optimizer, learning
rate, batch-size etc.) were kept consistent across the three
models.

All models achieved a low NLL loss (≈ 0.003) with high
reconstruction accuracy (≈ 99%) on a held-out test set.
However, the attribute distributions of the latent vectors
(obtained by passing data from the test set through the VAE-
encoder) are very different (see Fig. 1). There is a clear
ordering of the attributes along the respective regularized
dimensions for the regularized models while there is no such
structure for the Base model.

Attribute surface maps obtained by decoding latent vectors
on a 2-dimensional plane (comprised of the regularized di-
mensions) of the latent space also show a similar structure
(see Fig. 2). The attribute values are monotonically ordered

(a) RHY (b) PR (c) RHY-PR (d) Base
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Figure 2. Attribute surface maps for decoded latent vectors on a 2-
dimensional plane in the latent space (values for other dimensions
are fixed). The arrangement of plots and the axis representation
are similar to Fig. 1. Zoom in for higher resolution.

Figure 3. Measures generated by increasing the value of the regu-
larized dimension (values of other dimensions are kept constant)
for the RHY model. Rhythmic complexity increases gradually.

along the corresponding regularized dimensions. Moving
along these dimensions also produces measures with in-
creasing value of the corresponding attribute (see Fig. 3).

Models were also evaluated using the interpretability metric
(Adel et al., 2018). This was modified slightly by replacing
the linear classifier with a linear regression model. The re-
gression scores (higher is better) are: RHY: 0.84 (rhythmic
complexity), PR: 0.96 (pitch range), RHY-PR: 0.90 (aver-
age). In contrast, the Base model only manages 7.9e−06
(average). More information is available online.1

4. Conclusion
The results demonstrate that the proposed method is able
to encode selected musical attributes along different dimen-
sions of the latent space. This has potential to provide users
with more intuitive control over the generated music. The
regularization loss is simple to compute (as long as the
attribute values can be computed) and requires no hyper-
parameter tuning. Future work will involve carrying a more
thorough evaluation (using objective and subjective meth-
ods) by comparison with other latent space regularization
methods (Hadjeres et al., 2017; Lample et al., 2017).

1https://github.com/ashispati/AttributeModelling
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