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Abstract—We propose a visually conditioned music remixing
system by incorporating deep visual and audio models. The
method is based on a state of the art audio-visual source separa-
tion model which performs music instrument source separation
with video information. We modified the model to work with user-
selected images instead of videos as visual input during inference
to enable separation of audio-only content. Furthermore, we
propose a remixing engine that generalizes the task of source
separation into music remixing. The proposed method is able to
achieve improved audio quality compared to remixing performed
by the separate-and-add method with a state-of-the-art audio-
visual source separation model.

I. INTRODUCTION

In a music jam session with multiple instruments playing
simultaneously, each musician is able to play synchronously
with the others, focus on their and other parts, and continuously
communicate not only through sound but also with visual
cues. While a human processes and integrates both visual and
auditory information automatically, most traditional systems
for music analysis and processing focus on the acoustic signal
exclusively and do not incorporate visual information.

The increasing availability of platforms with large compu-
tational resources enabled the development of approaches in
both computer vision and audio that produce results with less
error than humans [1] and can even be applied to tasks that
can not be solved by human (e.g., a music recommendation
system that analyzes the content of millions of audio files [2]).
There also has been some promising work on integrating visual
and auditory patterns for classification tasks, e.g., [3], [4], [5].

Following the success of these technologies, research pro-
ceeds to investigate applications that involve integration of
multiple sensory modalities such as the combination of audio
and visual models. Examples for tasks where these approaches
are popular are speech source separation [6] and music source
separation [7], [8].

In the proposed work, we focus on the task of Music
Remixing which can be seen as a generalization of source
separation (and suppression) approaches. In source separation
systems, a weight of 1 is assigned to the source of interest and
weights of 0 (mute) are assigned to the other sources. In music
remixing, each source is assigned an individual adjustable
gain, allowing the modification of the mix levels without
complete separation of sources. While separation systems can
theoretically yield the same remixing result by separating the
sources and subsequently mixing them back together with

different weights, we show below that remixing yields superior
output quality for non-binary weights.

The proposed model is based on a state of the art audio-
visual cross-modal music source separation model presented by
Zhao et al. [7], which uses solo instrument videos as training
data and has a self-supervised training strategy that leverages
the videos as “visual cue” for the audio separation. Our model,
however, performs inference with a user-assigned instrument
image instead of a video recording as the visual cue.

To summarize, the main contributions of this work are
1) the introduction of the task Music Remixing as a general-

ization of music source separation with improved audio
quality over weighted mixing of completely separated
sources, and

2) the demonstration of the feasibility and success of utilizing
an instrument image (as opposed to a video) to allow for
the audio-only inference use case.

The remainder of the paper is structured as follows. The
following Sect. II presents a brief overview of relevant work.
The proposed method is described in detail in Sect. III and
is evaluated in Sect. IV. We conclude in Sect. V with a brief
summary and directions of future work.

II. RELATED WORK

Source separation is the task of separating one or more
audio signals representing the individual original sources
from a weighted mixture of these signals [9], [10]. The
most typical application areas of audio source separation are
(i) speech separation, with the goal of separating each speaker
from a recording comprising multiple individuals speaking
simultaneously [11], [12], and (ii) music source separation,
which aims at separating the vocals and each musical instrument
from a music recording [13], [14], [15], [16].

Although several attempts have been made to apply rule-
based algorithms defining constraints derived from characteris-
tics of the target signals (compare, e.g., harmonic-percussive
source separation [17]), the majority of approaches utilizes
machine learning algorithms that leverage the independent
structure within the mixture signal to adaptively filter out
the set of possible components of the target signal. These
approaches include, for example, Singular Value Decomposition
[18], Principal Component Analysis [19], and Non-negative
Matrix Factorization [20], [21].

Modern deep learning systems have shown the capacity of
modeling increasingly complex patterns in audio components.
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Fig. 1: System diagram of the visually assisted remixer.

Network architectures such as Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs) have been
shown to significantly outperform traditional methods [22], [23].
Most modern audio source separation approaches estimate a
time-frequency (T-F) mask for each instrument [24] which is
applied to the magnitude spectrogram of the input audio to
separate the desired audio components as shown in Fig. 2.
Approaches for T-F masking vary mostly in the design of
different training objectives such as signal approximation and
mask approximation; the former minimizes the error between
the separated audio signal and the target audio signal [25],
while the latter minimizes the error between the predicted
mask and the target mask [26], [27], [28]. Zhao et al. compare
two types of T-F masks, (i) the Ratio Mask (each pixel of the
T-F mask x ∈ [0, 1]), which has to be trained as a regression-
like training task that is often hard to train, and (ii) the Binary
Mask (each pixel of the T-F mask x ∈ {0, 1}) with a more
classification-like training task. The binary mask showed an
overall better performance.

Several researchers proposed to combine audio and visual
features to enrich the information that can be leveraged for
either audio applications [29], [30] or visual applications [31].

Utilizing this cross-modality information, several systems
have outperformed state-of-the-art single modality models in
both speech separation and music source separation tasks [6],
[32].

Cross-modal learning can also solve the issue of data
accessibility for supervised learning systems. It can allow to
apply a self-supervised learning scheme [33], [34] to label
training data automatically. The visual information of unlabeled
video data, for example, can be used as label to train a

supervised learning model that separates audio [7]. As manual
annotation of video and audio data can be costly and time
consuming, self-supervised learning provides a solution for
scalable and efficient data collection.

Zhao et al.’s work titled “The Sound of Pixels” presents
a music source separation system is able to provide the
audio information by clicking an arbitrary pixel in the video
frame of a music performance [7]. The system is trained
in a self-supervised framework along with the proposed
“MUSIC” dataset, which contains 536 untrimmed videos of solo
instrument performance. During the training phase, the system
processes the visual information of solo videos with a video
analysis network to extract the latent video feature, which is
later being combined with the latent audio feature extracted by
an audio analysis framework that takes the audio of mixture
of multiple solo instruments as input. Finally, a synthesizer
network leverages both latent features to generate the separated
audio signal. As the latent video feature is designed to maintain
the dimensions of the video frame, the system is able to provide
the separated audio signal at the “pixel level.”

III. METHOD

A re-implementation of Zhao et al.’s system serves as a
baseline music source separation system as well as a starting
point for the proposed remixing system.

The proposed system features two main modifications as
compared to the baseline system, (i) a modified inference
mechanism using an instrument image as visual cue, and (ii) a
remixing engine that allows adjusting the gain of individual
sources without having to separate the sources completely.



⌊Xt ⊘ Xmix +1/2⌋

Ideal  
Binary Mask

Target 
audio 

source
Complex 

spectrogram
Magnitude 

spectrogram

STFT

Complex 
spectrogram

Magnitude 
spectrogram

Phase 
spectrogram

Mixed  
audio

Predicted  
Binary Mask

Predicted  
audio 

source

Predicted 
complex 

spectrogram

Predicted 
magnitude 

spectrogramSTFT ISTFT
⊙

Xt

Xmix

Training objective

Training

Inference

Fig. 2: Audio source separation with time-frequency masking.

A. Implementation: Audio-Visual Source Separation

The cross-modality architecture is comprised of a visual
analysis model and an audio analysis model. The video analysis
network is modified from Dilated ResNet-18 [35], with the
last two layers removed and a 3× 3 convolution layer with K
output elements (corresponding to the size of the visual latent
embedding) is added. As opposed to Zhao et al., which extracts
the visual feature as a tensor of K×X×Y during the inference
(a latent representation of length K for each pixel in the image
size of X × Y ), we perform spatial max pooling to the visual
feature to collapse the embedding dimension to a vector of K
elements (compare the “Video analysis network” in Fig. 1).
This allows the network to keep only the most activated feature
for the audio analysis model. The visual input representation
computation follows Zhao et al., i.e., center cropping and down
sampling to the shape of 224×224 and doubling the frame rate
to 6 frames-per-second. A more detailed discussion is included
in Sect. III-B.

The audio analysis network has a modified Deep U-Net [36]
structure with 7 layers each for convolution and transposed
convolution and skip connections in between. The Audio U-
Net extracts a set of K audio latent feature representations
, matching the length of the visual latent feature, each with
the audio input spectrogram dimensions (compare the “Audio
analysis network” in Fig. 1). We design our experiment with
a larger input audio representation than Zhao et al. as we
use the audio sample rate of 44.1 kHz (as opposed to 16 kHz)
to preserve more high frequency content. We then extract
our input representation with an STFT window of size 1022
and a hop size of 512 frames on approximately 6 seconds of
audio, resulting in an input matrix of dimensions 512× 512
(as opposed to 256× 256). After concatenating both the latent
video and audio features, a synthesizer network estimates the
T-F mask for the target audio source.

The framework is trained in a self-supervised way by
randomly selecting two solo instrument videos for the mix-
and-separate framework.

The binary T-F mask is chosen as our training target as Zhao
et al. showed general superiority over the ration mask [7]. The
objective function of the training is the binary cross-entropy
loss between the predicted and the ideal binary mask (compare
Fig. 2). The network is trained for 85 epochs with a batch
size of 16 and a learning rate of 1e−4 for the visual analysis
network and a learning rate of 1e−3 for the both the audio
analysis network and the mask synthesizer network.

B. Inference with image as visual cue

As mentioned above, the originally proposed system features
a system called PixelPlayer, which allows the user to click on
any pixel in the video frame to obtain the sound “corresponding”
to the pixel’s visual information [7]. This PixelPlayer demon-
strates that the audio-visual model is able to relate the audio
pattern to granular visual features. However, the pixel level
audio output is not entirely practical in the source separation
scenario, where each instrument is mapped to exactly one
target audio source. Furthermore, the pixel-to-sound concept
has some fundamental inherent flaws; for example, it assumes
that parts of the instrument which are visually masked do
not produce sound. Practically, the network might also return
inconsistent results when selecting different pixels of the same
instrument.

Therefore, we base our design on the following three main
considerations. First, each original sound source (instrument)
should lead to only one separated target source. Second,
the audio-visual approach utilizing a self-supervised training
strategy with solo videos as training data makes sense given
the small size of traditional datasets. Third, the requirement
of a video recording during inference restricts possible use
cases unnecessarily by neglecting audio-only input. Therefore,
we design our approach to provide the separated target source
given two inputs, the mixed audio recording and an image
of the instrument to separate. This can be interpreted as a
conditional audio source separation problem, however, it retains
the advantage of self-supervised training.
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NSDR 8.87 7.83 9.05 -5.88 -17.71 13.69 -3.73
SIR 15.02 14.11 15.77 4.10 -0.15 22.15 1.45

SAR 12.28 10.63 10.46 2.66 -11.73 15.10 1.05

TABLE I: Model performance evaluated with BSS Eval toolbox. IBM stands for ideal binary mask, RBM stands for random
binary mask. No mask smoothing is applied.

The use of image as visual cue thus only targets the inference
scenario while the training set-up remains unchanged. During
the training phase, the visual analysis model is constructed
by stacking an image network (Dilated ResNet-18) with the
number of frames across the video, where the latent features of
all frames are combined with temporal max-pooling operation.
During the inference phase, this allows us to provide a single
image as the only input frame to the image network and exclude
the temporal max-pooling, resulting in the exact same output
shape and dimension mapping.

C. Remixing engine

The task of remixing can be interpreted as non-binary
generalization of source separation. It is useful in scenarios
where most components of the original mixture should remain
but with different volume relations. While this could be
achieved by completely separating all sources and subsequently
weighting them and adding them together, our hypothesis is that
a complete separation introduces more artifacts than applying
the weight for different sources simultaneously. The proposed
processing has two steps, mask smoothing and the frequency
domain remixing itself.

1) Binary mask smoothing: Binary masks tend to introduce
more artifacts than ratio masks during reconstruction due to the
steep slopes or discontinuities in the time-frequency domain.
For instance, discontinuities in the spectral axis can lead to
an impulse response considerably longer than the Inverse
Short-time Fourier Transform (ISTFT) window, which in turn
leads to artifacts referred to as time-domain aliasing, while
discontinuities in the time axis might lead to musical noise,
“ringing artifacts,” or sudden volume changes. These artifacts
can be reduced by smoothing the binary mask with a low-pass
filter. Here, we applied zero-phase filtering with an anticausal
single-pole low-pass filter on the time axis

2) Frequency domain mixing: As remixing does not require
the complete separation of all source, the goal is to change the
weighting of each individual source, given the mask the system
has estimated for this source. The weighted superposition of
the masked spectrograms allows to minimize discontinuity in
the spectral domain.

The remixing of N target separation signals is performed
by setting scaling factors s for each individual signal i and the
mixed signal xmix, respectively. The magnitude spectrogram
of each individual signal Xi is estimated by multiplying
each individual smoothed mask Mi with the input magnitude
spectrorgram Xmix. The final remixed magnitude spectrogram
Xremix is :

Xmix ·

(
1 +

N∑
i=1

si ·Mi

)
(1)

Note that the range of each scaling factor si could be −1 . . .∞,
where the lower bound at −1 corresponds to muting the target
source (In our interface demo, the upper bound is set to +1,
corresponding to a +6 dB gain).

IV. EVALUATION

The evaluation of our model has two objectives, (i) the
assessment of source separation quality to allow comparison
with other models and to understand the influence of the image
input on the output, and (ii) the assessment of the remixing
quality for different mixing weights.

Although the model is generally designed to separate one
target instrument given one target image, it can be applied to
an arbitrary number of sources. We perform the experiment
with the setting of only two mixed sources to allow for better
comparability with previous work and the more accessible and
extensive assessment of the remixing quality.

A. Data

The data utilized is the “MUSIC” dataset [7], a dataset
with musical recordings from YouTube selected by keyword
query. We leverage developer tools such as youtube-dl [37] as
YouTube data pipeline, and FFmpeg [38] to handle multimedia
file processing. The parsed dataset contains 493 untrimmed
videos of musical solos spanning the 11 instrument categories
accordion, acoustic guitar, cello, clarinet, erhu, flute, saxophone,
trumpet, tuba, violin, and xylophone. We split the parsed dataset
into a training set of 403 videos and an evaluation set of 91
videos.

Note that some of the originally listed videos of the
dataset are no longer available. Thus, the resulting number of
recordings (493) is necessarily smaller than that of the original
dataset (536). For the instrument images, we perform a small
scale data collection by gathering 10 images each for the 11
instrument categories.

A detailed list of our parsed dataset and image data can be
found as supplementary material in our online repository.1

B. Source separation quality

In order to present comparable results to other work, the
extreme case of remixing is evaluated first: source separation.
The standard evaluation metrics for source separation are the

1https://github.com/RichardYang40148/VAreMixer
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Fig. 3: Instrument specific performance with video versus image as visual cue

three BSS Eval metrics [9]: Normalized Signal-to-Distortion
Ratio (NSDR), Signal-to-Interference Ratio (SIR), and Signal-
to-Artifact Ratio (SAR). Note that the NSDR is defined as the
difference of SDRs of (i) the separated signals compared to
the ground truth signals, and (ii) the mixture signals compared
to the ground truth signals. This provides a normalized SDR
improvement measure independent of the complexity of the
mixture signal.

The evaluation results are shown in Table I. We can make the
following observations. First, note the IBM and RBM values;
these provide an upper and lower bound, respectively. The Ideal
Binary Mask (IBM) represents the separation results computed
with a binary mask directly estimated from the ground truth
and is, thus, a best case scenario. The results for the Random
Binary Mask (RBM) are for a randomly generated mask, which
simulates a system without inference capabilities. The range
between those two is the range in which the results for every
source separation system should lie.

Second, comparing the results for our baseline VAreMixer
(video) to the results originally reported in [7], we note that
our baseline system is outperformed across all metrics. We
speculate that the reason for this difference stems from two
sources, (i) the smaller size of our dataset (403:91 vs. 500:130)
and the resulting different data split, and (ii) the increased input
complexity due to the higher audio resolution (higher sample
rate and longer STFT windows). We consider this reproduction
difference to be only a minor issue, however, as we are mostly
concerned with the relative changes of our system over the
baseline.

Third, it can be observed that our proposed image-based
method VAreMixer (image) improves the result for the NSDR
and the SIR over both, our baseline and the results previously
posted. This increase can probably attributed to the higher
image quality of our test image input compared to the video
recordings. The SAR stays in the same range as the baseline
system. A more in-depth analysis how the metrics compare

between the baseline and the proposed system per instrument
class is shown in Fig. 3. It can be seen that while NSDR
and SIR improve nearly across all instruments, about half
of the instruments loose and half of the instruments gain in
the SAR domain. However, we could not identify a specific
common pattern across these instrument categories. Note that
we neither claim nor expect superior performance over the
original work [7]. However, the results show that separation
quality can improve or at least be on par despite using a less
complex network for a more challenging inference task due to
the missing video information.

Finally, we are interested in investigating how well the model
understands the audio-visual correlation. We are doing this by
(i) feeding a wrong image by randomly selecting images from
instrument categories other than the target instrument as visual
cue, and (ii) feeding a blank image as visual cue. The results
confirm that the network behaves largely as expected: the
wrong image decreases results for all metrics significantly and
brings them close to the random mask boundary, while the
blank image results in values considerably below that boundary
as the output is mostly silent.

C. Remixing quality

To begin our quality evaluation, we first investigate the
effect of binary mask smoothing. The baseline for comparison
is the Cepstrally-Smoothed binary mask (CBM) as proposed
by Stokes et al. [39]. The experimental results of Stokes et
al. show that the CBM, computed by the cepstral transform,
can effectively improve the audio perceptual quality over
binary T-F masking. To estimate the ideal smoothing parameter,
we perform a hyperparameter search to both the method of
Cepstrally-Smoothed binary mask (CBM) and our proposed
zero-phase low-pass filtered binary mask (ZLBM) across our
evaluation dataset.
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The metric for comparison is computed as

∆SNR = 20 · log10

(
RMS(Xref −Xsmooth)

RMS(Xref −Xbin)

)
. (2)

The signal reconstructed by the ideal ratio mask is our reference
signal Xref , the signal reconstructed by the binary T-F mask
is Xbin, and the signal reconstructed by the smoothed T-F
mask as Xsmooth. The result shows +0.065 dB gain on CBM
and +0.72 dB gain on ZLBM, indicating that compared to the
Cepstrally-Smoothed binary mask, our proposed binary mask
smoothing method yields a better reconstructed audio signal
compared to the a Cepstrally-Smoothed binary mask.

Next, we proceed to the evaluation of the proposed frequency
domain mixing strategy. While traditional source separation
metrics cannot be applied as the sources are not separated, we
can, however, compute three different signals for different
mixing levels, (i) the ideal ground truth reference as the
weighted superposition of the original sources, (ii) the output
of the proposed method, and (iii) the output of the two-step
process of first separating and then computing the weighted
superposition.

The computed metric is the improvement of Objective
Difference Grade (ODG) of the “basic version” of ITU-R
recommendation BS.1387 [40], [41], called Perceptual Evalu-
ation of Audio Quality (PEAQ). Designed for the evaluation
of audio coding quality with reference, the ODG utilizes a
perceptual model to rate the quality of an input file compared
to the unimpaired reference on a scale from -4 to 0. Figure 4

shows the absolute ODG improvement of the proposed method
over the separate-and-add method for different mixing weights
in the case of two sources mixed at equal level.

First, we can observe that the remixing engine provides the
biggest quality improvement at an equal mixing level (volume
both at 50% for each instrument). Due to the spectral domain
mixing strategy, our remixed signal is identical with the ground
truth signal ((s1 = 0 and s2 = 0 in Eq. (1)). We can also see
that the closer the relative mixing gain gets to the even mix,
the higher the quality improvement is.

Second, at the extreme separation scenarios which keep only
one source and mute the other, our magnitude spectrogram
for signal reconstruction is calculated by subtracting the
predicted magnitude spectrogram for the muted source from
the magnitude spectrogram of the mix signal (si for the muted
source is set to −1 in Eq. (1)). In this scenario, our spectral
domain remixing strategy shows similar ODG scores to the
separate-and-add approach as expected.

Third, we can confirm that the results computed with a
smoothed mask (beige) give a slightly but consistently higher
result across all mixing levels, reiterating our previous results.

Finally, there are some audio examples in which the ODG
decreases for the frequency domain remixing cases. Some
variability in the ODG results can be expected as PEAQ is
simply an algorithmic model of listener test results that was
developed to measure impairments due to coding artifacts. We
therefore can speculate on the following reasons for measured
quality decrease: (i) PEAQ model variability as the inference



Fig. 5: User interface of the proposed remixing system.

of the PEAQ model is imperfect, and (ii) PEAQ task specificity,
as the focus on audio coding artifacts (that PEAQ is trained
for) might not represent separation artifacts well in all cases.
Additionally, it is conceivable that there is uneven performance
between two sources A and B: as the frequency domain strategy
subtracts B from the mix to get A instead of using the A-mask
directly, a bad mask estimation of source B might also impact
the quality of source A.

D. Interface demo

A demo of the presented system is available at our online
repository.1

A screenshot of the interface as shown in Fig. 5. It prompts
the user to load an audio recording and select one of the
provided instrument images as target instrument. This image is
then used as the visual cue for inference. The slider enables the
user to adjust the volume of the target instrument in real-time.

V. CONCLUSION

The project proposed a visually assisted music remixing
system that integrates the knowledge of visual analysis and
audio analysis networks to provide the ability to control the
sound volume of individual instrument from a mixed sound
source. Our experiment starts with the implementation of “The
Sound of Pixels,” an audio-visual source separation model, and
demonstrates improved performance with the method of using
instrument video as training data, while using an image as
visual cue during the model inference.

In addition, by leveraging the difference between music
remixing and source separation, we further exploit the spectral
domain information from the original mix signal to reduce the
overall artifact of reconstructed remix signal. As a result, we
finalize our experiment with the development of VAreMixer.

There appears to be a significant performance drop for signals
originating from non-acoustic instruments. This is expected
in a data-driven approach where the training data does not
include the samples to represent those instrument categories.
Hence, the future work will focus on the extension of supported
instrument categories and the adaptation to wider music genres.
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