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a b s t r a c t 

As a form of evolutionary computation, particle swarm optimization is less effective in large scale optimization 

since it is unable to effectively balance exploration and exploitation. To address this problem, first, a learning 

structure decoupling exploration and exploitation is proposed. This helps simultaneously and independently man- 

aging exploration and exploitation in different components. Second, following the proposed learning structure, 

two novel learning strategies are developed. On the one hand, a local sparseness degree measurement in fitness 

landscape is proposed to estimate the congestion and distribution of particles, based on which an exploration 

strategy is built by guiding particles to sparse areas. On the other hand, an adaptive exploitation strategy is 

developed which can effectively adjust the fitness differences between exemplars and updated particles during 

the optimization process by employing a multi-swarm strategy and an adaptive sub-swarm size adjustment. Fi- 

nally, by embedding the two learning strategies into the proposed learning structure, an adaptive particle swarm 

optimizer with decoupled exploration and exploitation is proposed. Thanks to the novel balancing strategy of 

exploration and exploitation, the two functions in the proposed algorithm can be independently and simultane- 

ously managed. Furthermore, theoretical analyses are put forward to prove the convergence and computational 

complexity of the proposed algorithm. Comprehensive experiments are conducted based on the large scale opti- 

mization benchmarks from CEC 2010 and CEC 2013 and six state-of-the-art large scale optimization evolutionary 

algorithms, the results demonstrate the effectiveness of the proposed learning strategies and the competitive 

performance of the proposed algorithm. 
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. Introduction 

As a popular meta-heuristics, particle swarm optimization (PSO) has
eceived considerable attention due to its powerful ability in addressing
arious kinds of optimization problems [1,2] . The canonical PSO (cPSO)
mploys a swarm of particles to search the global optimum for a given
roblem. Each particle has two attributes, namely velocity and position,
hich are iteratively updated according to: 

 

𝑑 
𝑖 
( 𝑡 + 1) = 𝜔𝑣 𝑑 

𝑖 
( 𝑡 ) + 𝑐 1 𝑟 1 ( 𝑝𝑏𝑒𝑠𝑡 𝑑 𝑖 ( 𝑡 ) − 𝑝 𝑑 

𝑖 
( 𝑡 )) + 𝑐 2 𝑟 2 ( 𝑔𝑏𝑒𝑠𝑡 𝑑 ( 𝑡 ) − 𝑝 𝑑 

𝑖 
( 𝑡 )) (1)

 

𝑑 
𝑖 
( 𝑡 + 1) = 𝑝 𝑑 

𝑖 
( 𝑡 ) + 𝑣 𝑑 

𝑖 
( 𝑡 + 1) (2)

here 𝑣 𝑑 
𝑖 
( 𝑡 ) and 𝑝 𝑑 

𝑖 
( 𝑡 ) are the d th dimension of the i th particle’s velocity

nd position at generation t , respectively; gbest ( t ) is the best position
earched by the whole swarm at generation t; pbest i ( t ) represents the
est position achieved by the i th particle so far; 𝜔 is the inertia weight
hile c and c are acceleration coefficients; r and r are two random
1 2 1 2 
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alues within (0,1). Due to its simplicity and efficiency, cPSO has been
idely applied to various kinds of real world engineering optimization
roblems [3–5] . 

For cPSO, it is suffering from the premature convergence [6] . To
lleviate this issue, the parameter settings in cPSO must be properly se-
ected to balance the exploration and exploitation to avoid premature
onvergence [7] . The existing improvements on this issue are conducted
n many aspects, including initial population [8–10] , swarm size [11] ,
cceleration coefficients [11,12] , inertia weight [13] , and many others
14–20] . Although cPSO has achieved a great success in dealing with
ow-dimensional problems [7,21] , it is still a big challenge for cPSO to
ddress large scale optimization problems (LSOPs) due to the “curse of
imensionality ”. To be specific, the increasing dimensionality will cause
n explosion of the number of local optima, as well as an extension of the
ecision space around them, which greatly challenges the efficacy and
fficiency of cPSO [22] ; on the other hand, due to the limited computa-
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ional resources, only a small part of the decision space can be explored
n LSOPs [23] . Therefore, it is crucial to enhance cPSO’s search ability
n large scale decision space. 

As pointed out by [22] , the existing works on improving cPSO for
SOPs can be classified into two categories. First, embedding cPSO in
ooperatively coevolutionary (CC) framework is a widely used tactic,
here researchers divide a whole dimension into several sub-segments
nd separately handle each sub-segment to alleviate the adverse impacts
aused by the increasing dimensionality [24–27] . Second, significant
ffort has been put on proposing new learning or updating strategies
6,22,28–31] . Researchers attempt to develop more flexible learning
r updating strategies to enhance the diversity for stronger exploration
bility. For examples, Zhao et al. adopt multi-swarm methods to pro-
ote the information exchange among particles for maintaining swarm
iversity [28] ; Cheng et al. propose competitive swarm optimizer (CSO)
hich updates only half of the particles at each generation and employs

he mean position of the swarm to guide particles for preserving diver-
ity [6] . 

However, both of these methods show room for further improve-
ent. For the cPSO variants within the CC framework, their perfor-
ance not only highly relates to variable grouping techniques [22,26] ,

ut also depends on the heavy cost of fitness evaluations ( FEs ) [22,32] .
or the cPSO variants with new learning strategies, it is a challenge to
alibrate the weight of exploration and exploitation since the two func-
ions are coupled in the algorithm structure. To be specific, the explo-
ation enhancements in the existing works commonly contribute conver-
ence while the existing exploitation managements are always related
o diversity preservation. For example, in CSO, the mean position of the
warm is used to enhance the swarm diversity. However, it is shared by
ll updated particles, which limits its ability of enhancing diversity. Be-
ides, the competitive learning mechanism is designed for exploitation
22] , but it allows half of particles directly pass to the next generation.
his is beneficial for preserving diversity and reduces the convergence
peed. 

Therefore, it is still a big challenge for cPSO to handle with LSOPs.
n particular, as discussed above, the main obstacle for improvements
f the learning strategy is the coupling of exploration and exploitation,
eading to difficulties in balancing these two functions during the op-
imization process. To solve this problem, this paper aims to develop
ovel learning strategies for balancing exploration and exploitation in
SO. The main contributions of this paper are listed as follows: 

1. A novel learning structure decoupling exploration and exploitation
for cPSO is proposed in this paper, where the exploration and ex-
ploitation are conducted in different components. Therefore, these
two functions are decoupled and can be explicitly and independently
managed; 

2. The traditional way to measure population diversity is based on the
whole swarm, and therefore the results cannot bring a detailed im-
provement for the particles updating. In this paper, a local sparseness
degree measurement in fitness landscape is proposed to provide a
microscopic view of local crowding information. The proposed mea-
surement is not only independent of the details of the optimization
problem, but also can be used to evaluate the sparseness information
for each particle by considering both the congestion and distribution
of particles. Based on this indicator, an exploration learning strategy
is put forward from the perspective of swarm diversity preservation.

3. An adaptive multi-swarm strategy is designed in this paper. On the
one hand, thanks to a new particle grouping method, the proposed
adaptive multi-swarm strategy is able to adapt to different swarm
size settings, which is beneficial for the scalability of the sub-swarm
size settings. On the another hand, by adopting an adaptive sub-
swarm size adjustment, the proposed adaptive multi-swarm strat-
egy dynamically changes the sub-swarm size during a run. With this
multi-swarm strategy, an exploitation learning strategy is proposed
by guiding particles with the corresponding best individual in each
sub-swarm, where the convergence pressure can be effectively man-
aged by adjusting the sub-swarm size. 

4. By incorporating the proposed exploration and exploitation learn-
ing strategies into the proposed novel learning structure, an adap-
tive particle swarm optimizer with decoupled exploration and ex-
ploitation (APSO-DEE) is developed. In APSO-DEE, the exploration
and exploitation can be independently and simultaneously managed.
Furthermore, the employed adaptive sub-swarm size adjustment is
able to dynamically balance the exploration and exploitation in the
optimization process. 

The rest of this paper is organized as follows. Section 2 presents a
iterature review on popular evolutionary algorithms (EAs), especially
SO, in addressing LSOPs. Section 3 describes the details of the pro-
osed APSO-DEE. Section 4 presents the theoretical analysis of the con-
ergence and computational complexity for the proposed APSO-DEE. In
ection 5 , based on the benchmarks provided by CEC 2010 and CEC
013, comprehensive parameter sensitivity analyses are conducted and
everal peer EAs are employed to compare the proposed algorithm’s per-
ormance. Finally, we conclude this paper and present our future work
n Section 6 . 

. Related work 

This section will present a comprehensive review on the works of
PSO’s variants as well as other widely-used EAs in large scale optimiza-
ion. Without loss of generality, an optimization problem is regarded as
 minimization problem as defined by: 

𝑖𝑛𝑓 ( 𝑥 ) , 𝑥 = [ 𝑥 1 , ..., 𝑥 𝑑 , ..., 𝑥 𝐷 ] (3) 

here D denotes the dimensionality of an optimization problem, x d rep-
esents the d th dimension of a feasible solution. 

As introduced by Qiang et al. [22] , addressing LSOPs is challenging
or cPSO and other meta-heuristics due to the high dimensionality usu-
lly causes an explosion of the number of local optima and expands the
ecision space around them. The existing improvements in this area can
e classified into the following two categories. 

.1. Meta-heuristics with CC framework 

Incorporating meta-heuristics with CC framework is a hot topic in
arge scale optimization. Studies in this category focus on dividing de-
ision variables into many sub-segments. Each sub-segments has a low
imension and will be independently optimized. By this means, the dif-
culties caused by a large scale dimensionality will be overcome. 

The first attempt to incorporate cPSO with CC framework is con-
ucted by Van et al., where CCPSO − S K and CCPSO − S H are proposed.
he former divides the decision variables into D / K sub-segments which
re optimized by cPSO while the later alternatively updates the swarm
sing CCPSO − S K and the cPSO. However, they just test the proposed
lgorithms with low dimensionality [24] . Based on CCPSO − S K , Li et al.
ropose CCPSO by using a random variables grouping strategy and fur-
her refining the solutions obtained by CCPSO − S K with an adaptive
eighting scheme [25] . Then, Li et al. propose CCPSO2 based on CCPSO
y adopting Gaussian mutation and Cauchy mutation for exploration
nd exploitation, respectively, and removing the adaptive weighting.
dditionally, an adjustment strategy on variable group size is developed

n CCPSO2 showing competitive performance in tackling the interdepen-
ency variables [26] . Tang et al. develop AM-CCPSO with increasing the
umber of context vector to provide robust and effective co-evolution
27] . Recently, Peng et al. propose MMO-CC, where the CC framework
s implemented to a modified CMA-ES and a nondominance-based se-
ection scheme is proposed to adaptively select context vector with con-
ideration on both quality and diversity [32] . 

However, the performance of meta-heuristics with CC framework se-
iously depends on the variables grouping techniques. To identify the
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ependency among variables, several promising grouping methods have
een proposed. Chen et al. propose variable interaction learning to dy-
amically identify the independency between variables in the optimiza-
ion process [33] . Mahdavi et al. propose meta-modeling decomposition,
here a first order RBF-HDMR is used to identify the interactions among
ariables to create the nonseparable and separable sub-segments [34] .
midvar et al. present DG to investigate the interaction between two
ariables based on the changes of the global function fitness [35] . Sun
t al. propose XDG to identify the indirect interactions among variables
o improve DG for Rosenbrock function [36] . Mei et al. propose GDG
hich helps address the sensitivity problem of DG by considering the

omputational errors [37] . Omidvar et al. develop DG2 to reduce the
unction evaluations in the variables grouping process by introducing
n systematic selection of sample points [38] . 

Nevertheless, there are two main drawbacks behind this kind of
ethods. On the one hand, these variables grouping techniques com-
only cause a heavy FEs computation cost [22] . On the other hand, the
eta-heuristics with CC framework produce a huge amount of extra FEs

ompared with the methods without CC framework, the reason is that
ach solution in a sub-segment should be evaluated by interacting with
ne or more representative solutions [32] . 

.2. Meta-heuristics with new learning or updating strategies 

The main purpose of designing new learning or updating strategies is
o enhance the diversity preservation ability for improving exploration.

Zhao et al. propose DMS-PSO to promote the information exchange
mong particles for swarm diversity preservation by adopting several
rouping tactics to frequently divide the whole population into a large
umber of sub-swarms during a run [28] . Hsieh et al. present EPUS-
SO allowing each particle’s pbest to be the leader of other particles to
nhance the swarm diversity. Furthermore, the population size of EPUS-
SO will be changed based on the solution searching status to help en-
ance exploration and save computation budget [29] . Cheng et al. pro-
ose FBE to solve LSOPs, where the whole swarm is divided into two
ub-swarms. At each generation, a fitness value based competition is em-
loyed to identify the superior and inferior particles, then each inferior
article is leaded by the best and another randomly selected particles in
he opposite sub-swarm while the superior particles are subjected to a
utation operation [30] . Cheng et al. propose CSO based on the same

ompetition mechanism [6] . In CSO, the superior particles in the com-
etition are employed as the exemplars for the corresponding inferior
articles and directly kept to the next generation. Besides, the mean po-
ition of the whole swarm is used to guide the inferior particles. With
hese strategies, the swarm diversity is significantly increased. Inspired
y nature phenomenons, Cheng et al. develop SLPSO by allowing parti-
les to learn from each individuals that are better than themselves, by
his means, the search flexibility of particles is diversified [31] . Nan-
ar et al. propose HCLPSO to enhance the exploration and exploitation
n cPSO, where the swarm is divided into two subpopulations which
ocus solely on either exploration or exploration by adopting different
earning strategies [39] . Yang et al. propose DLLSO by adopting a level-
ased learning strategy which greatly diversifies the exemplars, besides,
he two exemplars of each particle are sorted based on the fitness value
o get a compromise between exploration and exploitation [22] . 

Besides, many researchers attempt to construct new learning or up-
ating strategies by hybridizing cPSO with other algorithms and tech-
iques. Park et al. propose an improved cPSO by employing a chaotic
equences based linearly decreasing inertia weights adjustment and a
rossover operation scheme to enhance swarm diversity [40] . Jia et al.
evelop CGPSO by utilizing chaotic local search and Gaussian optimiza-
ion. In CGPSO, the chaotic local search is adopted to enhance the explo-
ation ability of cPSO in the initial optimization process while the Gaus-
ian optimization is employed to refine the promising solution in the
ater stage [41] . Wang et al. propose GOPSO to alleviate the premature
onvergence based on Cauchy mutation and a generalized opposition-
ased learning strategy [42] . Tang et al. develop a hybrid cPSO to im-
rove the global search ability of the algorithm, where a memetic algo-
ithm is used to help particles gain some experience before the evolu-
ionary process [43] . Tao et al. propose a hybrid SA-PSO by introduc-
ng the metropolis rule of simulated annealing algorithm into cPSO to
ontrol the particles’ updating during the run and accelerate the con-
ergence speed of the algorithm [44] . Soleimani et al. develop a hybrid
ptimizer by combining genetic algorithm with cPSO, which can ultilize
he advantages of both genetic algorithm and cPSO [45] . Ali et al. pro-
ose a hybrid PSO by utilizing the arithmetical crossover operator and
utation operation to increase the swarm diversity [46] . 

Moreover, except for cPSO, researchers also design various new
earning or updating strategies for other kinds of meta-heuristics to solve
SOPs. CMA-ES proposed by Hansen et al. shows competitive perfor-
ance in global optimization. However, it is less effective in large scale

ptimization due to the high computational cost for creating the co-
ariance matrix [47,48] . To alleviate this problem, Ros et al. propose
ep-CMA-ES to reduce the computation complexity to O ( D ) by only com-
uting the diagonal elements of the covariance matrix [49] . Loshchilov
t al. propose LM-CMA-ES to reduce the computation complexity to
 ( MD ) by computing the covariance matrix only based on M selected di-

ection vectors and a matrix decomposition method, although it’s more
omputation consuming, it shows better performance than sep-CMA-ES
50] . Molina et al. propose Ma-Sw-Chains by employing steady-state
A and a local search method to balance the global and local search
ehaviour [51] . LaTorre et al. propose MOS which is able to utilize ad-
antages of different optimizers by dynamically operating a set of opti-
izers in a sequential manner based on designed quality measure [52] .
hang et al. propose JADE by designing a mutation strategy and an op-
ional archive operation for differential evolution, where the optional
rchive operation can provide the information of progress direction by
tilizing historical information [53] . Brest et al. propose jDElscop by
roposing a population size reduction mechanism which is proved to be
eneficial for improving the optimization performance [54] . Yang et al.
ropose GaDE to adaptively adjust DE’s parameter for improving its scal-
bility in LSOPs. To balance exploration and exploitation for differential
volution, Ali et al. propose mDE-bES, where different mutation and up-
ating strategies are designed for different sub-populations [55] . Hadi
t al. propose a LSADE-SPA memetic Framework, where several opti-
ization techniques are combined together for solving LSOPs [56,57] .
olina et al. develop a DE variant named SHADE-ILS by adopting a pop-

lation re-start strategy and two large scale local search methods [58] . 
However, although the above works put great effort on improving

eta-heuristics for LSOPs, premature convergence is still challenging.
he main reason is that the exploration and exploitation are highly cou-
led in the existing works. In another word, the diversity and conver-
ence can not be explicitly and independently managed, leading diffi-
ulties in balancing them to improve the searching ability. For examples,
n CSO, although the mean position will change at every generation, it
s obvious that the diversity can not be effectively enhanced by guiding
articles with the mean position, because the mean position is shared by
ll the updated particles, which will inevitably reduce the swarm diver-
ity; for DLLSO, it significantly diversifies the exemplars by a level-based
xemplar selection mechanism. However, the distribution of particles is
ot considered. This means that the particles in crowded decision spaces
as the same probability to be selected as the exploration exemplars as
he particles in sparse decision spaces, which lacks efficacy to produce
igh diversity. Besides, DLLSO improves its exploitation ability by in-
reasing the particles number in each level to increase the fitness dif-
erences between updated particles and the exemplars. However, more
romising particles will be not able to participate in the updating oper-
tion under such situation, which potentially contributes the diversity
reservation and cannot further benefit the exploitation. 

In summary, large scale optimization is still challenging for meta-
euristics. In particular, for the PSO variants with new learning or
pdating strategies, the coupling of exploration and exploitation lim-
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Fig. 1. The potential fitness landscape at generation t under the assumptions 

that the swarm size is 6 and the particles have been sorted according to the 

fitness value. 
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Fig. 2. Computation of l i ,1 , l i ,2 , and L . 

Fig. 3. The potential fitness landscape under the assumption that p j and p k are 

about the same congestion. 
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ts their abilities of preserving diversity for exploration and refining
romising solutions for exploitation. Therefore, balancing exploration
nd exploitation is still a big challenge for PSO. 

. Proposed algorithm 

As discussed in the literature review, due to the coupling of explo-
ation and exploitation in the existing work, cPSO and its variants suf-
er from the balancing of these two functions. To address this issue, a
earning structure decoupling exploration and exploitation for cPSO is
roposed first. Then, two novel learning strategies are introduced for ex-
loration and exploitation, respectively. Finally, by embedding the pro-
osed learning strategies into the novel learning structure, an adaptive
article swarm optimizer with decoupled exploration and exploitation
s proposed for large scale optimization. 

.1. A learning structure decoupling exploration and exploitation 

The proposed novel particles learning structure is shown in the fol-
owing equations: 

 𝑖 ( 𝑡 + 1) = 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 ( 𝑣 𝑖 ( 𝑡 )) + 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 ( 𝑣 𝑖 ( 𝑡 )) + 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 ( 𝑣 𝑖 ( 𝑡 )) (4)

 𝑖 ( 𝑡 + 1) = 𝑝 𝑖 ( 𝑡 ) + 𝑣 𝑖 ( 𝑡 + 1) (5)

here Inertia ( v i ( t )) is the inertia component inherited from the
PSO to ensure the stability of the algorithm [6] , namely, 𝜔 v i ( t );
xploration ( v i ( t )) and Exploitation ( v i ( t )) are the learning strategies con-
ucting exploration and exploitation, respectively; v i ( t ) and p i ( t ) are the
elocity and position of the i th particle at generation t , respectively. In
his learning structure, each component on the right side of (4) focuses
n different operations. Consequently, the exploration and exploitation
re conducted in different components in the proposed learning struc-
ure. Therefore, the weights in the three components are explicit in bal-
ncing exploration and exploitation. 

In short, the exploration and exploitation are decoupled in the pro-
osed learning structure and can be independently and simultaneously
anaged, which benefits the balance of these two functions. 

.2. Exploration learning strategy 

Exploration is the ability of EAs to discover a diverse assortment of
olutions that are distributed in different regions of the decision space
59] . Therefore, to improve the exploration ability of cPSO, this paper
evelops the exploration learning strategy from the perspective of di-
ersity preservation. 

As discussed in Section 2 , although DLLSO has significantly increased
he exemplars diversity, it lacks mechanisms to avoid particles flying to-
ether to the congestion areas, which is detrimental to diversity. To be
pecific, as shown in Fig. 1 , since DLLSO only allows particles learn from
thers that are better than themselves, the fitness landscape between p 4 
nd p 6 can only be unidirectionally explored by p 5 and p 6 . This poten-
ially leads to a poor phenotypic diversity. 

To solve this problem, this paper proposes a novel local sparseness
egree measurement in fitness landscape taking both the congestion and
istribution of particles into consideration, which is computed according
o: 

𝑜𝑛 ( 𝑖 ) = 

𝑙 𝑖, 1 + 𝑙 𝑖, 2 
(6)
𝐿 
𝑖𝑠 ( 𝑖 ) = 

𝑚𝑖𝑛 ( 𝑙 𝑖, 1 , 𝑙 𝑖, 2 ) 
𝑚𝑎𝑥 ( 𝑙 𝑖, 1 , 𝑙 𝑖, 2 ) 

(7)

𝑆𝐷( 𝑖 ) = 

𝑐𝑜𝑛 ( 𝑖 ) 
𝑚𝑎𝑥 ( 𝑐𝑜𝑛 ) 

𝑑𝑖𝑠 ( 𝑖 ) 
𝑚𝑎𝑥 ( 𝑑𝑖𝑠 ) 

(8)

here LSD ( i ) is the proposed local sparseness degree of the i th particle in
tness landscape; con ( i ) and dis ( i ) indicate the congestion and distribu-
ion of the i th particle, respectively. l i ,1 , l i ,2 , and L are the corresponding
ntervals shown in Fig. 2 , N denotes the swarm size. Note that pheno-
ype diversity, which is computed in fitness space, is a widely adopted
iversity measurement in EAs [60] . It is able to not only evaluate the
warm diversity, but also benefit the saving of computational cost on di-
ersity evaluation. Therefore, the LSD in this paper is proposed based on
he phenotype diversity for both diversity evaluation and computational
implicity. 

The functions of con ( i ) and dis ( i ) are clear. First, with the setting of
on ( i ), a large space around the i th particle results in a large value of
SD ( i ). This indicates that the particles in the sparse areas of the fitness
andscape will get larger LSD than that in crowding areas. Second, with
he design of dis ( i ), an uneven distribution of the i th particle and its
djacent neighbours leads to a small value of LSD ( i ). This is motivated by
hat particles should uniformly distribute in the fitness landscape. Fig. 3
hows an example in which p j and p k are about the same congestion
hile p k is closer to its neighbour 𝑝 𝑘 +1 , which indicates learning from p k 

s less effective to keep an uniform distribution. Since the best and worst
articles locate in the boundary scope, there is only one neighbor around
hem, respectively. Therefore, it is difficult to directly compute the LSD

f the best and worst particles. To solve this problem, the two particles
re not included in the exploration exemplar selection operation and
he corresponding LSD is set to 0 for the following reasons. The best
article should be selected as the exploitation exemplar. On the other
and, it is of little value to employ the worst particle as the exploration
xemplar since the worst particle is considered lying in a poor search
rea. In addition, since a large swarm size is commonly adopted in large
cale optimization, it will scarcely impact the searching behavior of the
xploration operation without employing the best and worst particles as
he exploration exemplars. 

With this local sparseness degree, particles in the proposed algorithm
ill learn from others with higher LSD for diversity preservation. In ad-
ition, to prevent the algorithm from premature convergence, this paper
uggests that the particles with high LSD should have a larger likelihood
o be directly passed to the next generation. Following the above ideas,
he exploration learning strategy is designed as follows. Firstly, the LSD

f each particle should be computed at each generation. Secondly, an
mpty set P updated used to contain the particles to be updated at genera-
ion t should be defined. Thirdly, a ranking vector is computed to store
he rank of each particle by sorting their LSD in ascending order. A par-
icle will be put into P updated if its rank is less than or equal to N · rand ,
here rand is randomly generated within (0,1) and N is the swarm size.
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g  
he exploration exemplar for a particle in P updated is randomly selected
rom the particles with larger LSD . Finally, the velocity of the i th particle
n P updated is updated according to (9) for exploration based on diversity
reservation 

 

𝑑 
𝑖 
( 𝑡 + 1) = 𝜙𝑟 1 ( 𝑝 𝑑 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛,𝑖 ( 𝑡 ) − 𝑝 𝑑 

𝑖 
( 𝑡 )) . (9) 

Here, 𝑝 𝑑 
𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛,𝑖 

( 𝑡 ) is the d th dimension of the exploration exemplar

or i th particle in P updated at generation t ; 𝑝 𝑑 
𝑖 
( 𝑡 ) is the d th dimension of

he i th particle’s position at generation t; r 1 is a random value within
0,1), 𝜙 is a parameter set by users. The pseudo-code of the selection
trategy for exploration exemplars and updated particles is shown in
lgorithm 1 . 

Algorithm 1: Pseudo-code of the exploration exemplars and up- 
dated particles selection strategy 

Input : Swarm 𝑃 ( 𝑡 ) , fitness value vector 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 , swarm size 𝑁 

Output : The exploration exemplar set 𝑃 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 and the updated 
particle set 𝑃 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 at 𝑡 th generation 

1 𝑃 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 ← ∅; 
2 𝑃 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 ← ∅; 
3 𝑃 ← Sort 𝑃 ( 𝑡 ) according to the fitness value in ascending order; 
4 for 𝑖 = 1 to 𝑁 do 

5 𝐿𝑆𝐷( 𝑖 ) ← Compute 𝐿𝑆𝐷( 𝑖 ) according to (8); 
6 end 

7 𝑟𝑎𝑛𝑘𝑖𝑛𝑔 ← Create a vector to store the ranking of each particle 
that is computed by sorting 𝐿𝑆𝐷 in ascending order; 

8 for 𝑖 = 1 to 𝑁 do 

9 if 𝑟𝑎𝑛𝑘𝑖𝑛𝑔( 𝑖 ) ≤ 𝑁 ⋅ 𝑟𝑎𝑛𝑑 then 

10 Build the set 𝑆 𝑒 including all the particles with higher 
𝐿𝑆𝐷 than the 𝑖 th particle; 

11 𝑝 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛,𝑖 ( 𝑡 ) ← Randomly select a particle in 𝑆 𝑒 ; 
12 𝑃 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 ← 𝑃 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 ( 𝑡 ) 

⋃
𝑝 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛,𝑖 ( 𝑡 ) ; 

13 𝑃 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 ← 𝑃 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 
⋃

the 𝑖 th particle; 

14 end 

15 end 

Apparently, the proposed learning strategy is more efficient in diver-
ity preservation than DLLSO because the space between p 4 to p 6 can
e better explored than in DLLSO under the situation shown in Fig. 1 .
his is benefited from that p 4 and p 5 will be explored by more particles
ue to their higher LSD . To be more general, given any potential fitness
andscape, the proposed exploration strategy should outperform DLLSO
n uniformly distributing the particles in fitness landscape. The reason is
hat for one thing, DLLSO fails to efficiently employ particles in sparse
reas to guide more particles in crowding areas since DLLSO allows par-
icles attract only the particles worse than them; for another, particles
n sparse areas might learn to the particles in crowding areas in DLLSO.
n summary, with the proposed exploration strategy, users can vary 𝜙
o adjust the diversity for exploration function calibration. 

.3. Exploitation learning strategy 

Exploitation aims to further refine the promising regions of the de-
ision space in the searching process, which plays a vital role in EAs
23,59] . Therefore, the exploitation operator is also crucial to the per-
ormance of cPSO since it helps find better solutions or improve the
xisting ones. This paper proposes an adaptive multi-swarm based ex-
loitation learning strategy as introduced following. 

In multi-swarm strategies with specific swarm size N and sub-swarm
ize s , the whole swarm will be divided into several sub-swarms. How-
ver, if the swarm is equally divided into N / s sub-swarms, it is not con-
ucive to the scalability of s . To this end, given a sub-swarm size s , this
aper computes the sub-swarm number g num 

by (10) . 

 𝑛𝑢𝑚 = ⌈( 𝑁∕ 𝑠 ) ⌉ (10) 
For the sub-swarms, the top 𝑔 𝑛𝑢𝑚 − 1 sub-swarms are randomly as-
igned with s particles while the last sub-swarm holds the remaining
articles. Therefore, the proposed adaptive multi-swarm strategy is able
o adapt to different sub-swarm size settings. 

With the above settings, the exploitation learning strategy is de-
igned as follows. Firstly, the whole swarm will be divided into several
ub-swarms. Secondly, an empty set P updated used to contain the particles
o be updated at generation t will be defined. Thirdly, particles in each
ub-swarm will be put into P updated except for the best individual. The
est particles in each sub-swarm will be directly preserved to the next
eneration and will be employed as the exploitation exemplar for the
emaining particles in the corresponding sub-swarm. Consequently, the
 th particle in P updated updates its velocity according to (11) for exploita-
ion 

 

𝑑 
𝑖 
( 𝑡 + 1) = 𝑟 2 ( 𝑝 𝑑 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛,𝑖 ( 𝑡 ) − 𝑝 𝑑 

𝑖 
( 𝑡 )) . (11) 

Here, 𝑝 𝑑 
𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛,𝑖 

( 𝑡 ) is the d th dimension of the exploitation exemplar

or i th particle in P updated at generation t ; 𝑝 𝑑 
𝑖 
( 𝑡 ) is the d th dimension of the

 th particle’s position at generation t; r 2 is a random value within (0,1).
he pseudo-code of the selection strategy for the exploitation exemplars
nd updated particles is shown in Algorithm 2 . 

Algorithm 2: Pseudo-code of the exploitation exemplars and up- 
dated particles selection strategy 

Input : Sorted swarm 𝑃 ( 𝑡 ) , fitness value vector 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 , swarm size 
𝑁 , group size 𝑠 

Output : The exploitation exemplars 𝑃 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 and the updated 
particles 𝑃 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 at 𝑡 th generation 

1 𝑃 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 ← ∅; 
2 𝑃 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 ← ∅; 
3 𝑔 𝑛𝑢𝑚 ← Compute the sub-swarm number according to equation 

(10); 
4 𝑃 𝑡𝑒𝑚𝑝 ← 𝑃 ; 
5 for 𝑘 = 1 to 𝑔 𝑛𝑢𝑚 do 

6 if 𝑘 < 𝑔 𝑛𝑢𝑚 then 

7 𝑔𝑟𝑜𝑢𝑝 𝑘 ← Randomly select 𝑠 particles in 𝑃 𝑡𝑒𝑚𝑝 ; 
8 Move particles in 𝑔𝑟𝑜𝑢𝑝 𝑘 from 𝑃 𝑡𝑒𝑚𝑝 ; 

9 else 

10 𝑔𝑟𝑜𝑢𝑝 𝑘 ← 𝑃 𝑡𝑒𝑚𝑝 ; 
11 end 

12 end 

13 for 𝑖 = 1 to 𝑁 do 

14 𝑔𝑟𝑜𝑢𝑝 𝑘 ← Finding the 𝑘 th sub-swarm that the 𝑖 th particle 
belong to; 

15 if the 𝑖 th particle is not the best individual in 𝑔𝑟𝑜𝑢𝑝 𝑘 then 

16 𝑝 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛,𝑖 ( 𝑡 ) ← the best particle in 𝑔𝑟𝑜𝑢𝑝 𝑘 ; 
17 𝑃 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 ← 𝑃 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 

⋃
𝑝 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛,𝑖 ( 𝑡 ) ; 

18 𝑃 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 ← 𝑃 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 
⋃

the 𝑖 th particle; 

19 end 

20 end 

As discussed in [6,22] , the exploitation ability can be indicated by
he fitness differences between exemplars and the updated particles. In
he proposed strategy, a swarm with a small s will exploit more solu-
ions, which means small gaps between exemplars and updated parti-
les. This results in a low convergence pressure while more potential
olutions can be exploited. Large sub-swarm size s , however, the whole
warm will only exploit few solutions with high qualities leading to in-
reasing fitness differences between exemplars and the updated parti-
les. In other words, increasing the sub-swarm size s results in increasing
he convergence pressure. 

Therefore, sub-swarm size s can be used to effectively manage the
onvergence pressure for exploitation. Combining this idea with that a
ood optimizer should emphasize exploration in the early optimization
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Algorithm 3: Pseudo-code of APSO-DEE 

Input : Swarm size 𝑁 , set 𝑆, parameter 𝜙
Output : 𝑔𝑏𝑒𝑠𝑡 : the best solution 

1 Initialize a swarm 𝑃 ; 
2 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ← Compute the fitness vector; 
3 𝑡 = 1 ; 
4 while terminal condition is not met do 

5 Select the sub-swarm size 𝑠 from 𝑆; 
6 𝑃 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 , 𝑃 𝑢𝑝𝑑 𝑎𝑡𝑒𝑑 , 1 ← Run Algorithm 1; 
7 𝑃 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 , 𝑃 𝑢𝑝𝑑 𝑎𝑡𝑒𝑑 , 2 ← Run Algorithm 2; 
8 for 𝑖 = 1 to 𝑁 do 

9 if the 𝑖 th particle ∈ 𝑃 𝑢𝑝𝑑 𝑎𝑡𝑒𝑑 , 1 
⋂
𝑃 𝑢𝑝𝑑 𝑎𝑡𝑒𝑑 , 2 then 

10 Update the 𝑖 th particle according to (12) and (13); 
11 Check the feasibility of the 𝑖 th particle;; 

12 else 

13 Pass the 𝑖 th particle to the next generation without 
doing anything; 

14 end 

15 end 

16 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ← Compute the fitness vector; 
17 𝑔𝑏𝑒𝑠𝑡 ← the current best particle; 
18 𝑡 = 𝑡 + 1 ; 
19 end 
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tage while paying more attention on exploitation in the later stage [61] ,
n adaptive sub-swarm size adjustment is employed in this paper. To be
pecific, a set S containing different settings of s will be predefined and
he whole optimization process will be divided into | S | stages. In each
tage, s is selected from S from small to large according to the cost of
Es . For example, if S is {10, 20} and the maximum FEs is set to 100, the
hole optimization process will be divided into two stages covering FEs

rom 0 to 50 and 51 to 100, respectively, then s should be 10, 20 in each
tage, respectively. This means that the sub-swarm size in the proposed
xploitation learning strategy will be gradually increasing in order to
ynamically adjust the differences between the updated particles and
xemplars to manage the convergence pressure. 

.4. APSO-DEE 

By embedding the discussed exploration and exploitation formula-
ions into the updating framework presented in (4) , a novel learning
trategy is proposed which is formulated as: 

 

𝑑 
𝑖 
( 𝑡 + 1) = 𝜔𝑣 𝑑 

𝑖 
( 𝑡 ) + 𝜙𝑟 1 ( 𝑝 𝑑 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛,𝑖 ( 𝑡 ) − 𝑝 𝑑 

𝑖 
( 𝑡 )) + 𝑟 2 ( 𝑝 𝑑 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛,𝑖 ( 𝑡 ) − 𝑝 𝑑 

𝑖 
( 𝑡 )) 

(12) 

 

𝑑 
𝑖 
( 𝑡 + 1) = 𝑝 𝑑 

𝑖 
( 𝑡 ) + 𝑣 𝑑 

𝑖 
( 𝑡 + 1) (13)

here p exploration,i ( t ) and p exploitation,i ( t ) are produced by Algorithm 1 and
lgorithm 2 , respectively; 𝑣 𝑑 

𝑖 
( 𝑡 ) and 𝑝 𝑑 

𝑖 
( 𝑡 ) are the d th dimension of the

 th particle’s velocity and position, separately; 𝜔 , r 1 and r 2 are set to
andom values within (0,1); 𝜙 is set by users. In (12) , 𝜔𝑣 𝑑 

𝑖 
( 𝑡 ) helps en-

uring the stability of the algorithm [6] while 𝜙𝑟 1 ( 𝑝 𝑑 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛,𝑖 ( 𝑡 ) − 𝑝 𝑑 
𝑖 
( 𝑡 ))

nd 𝑟 2 ( 𝑝 𝑑 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛,𝑖 ( 𝑡 ) − 𝑝 𝑑 
𝑖 
( 𝑡 )) focus on the exploration and exploitation,

espectively. 
Therefore, the exploration and exploitation are independently man-

ged in different components in the proposed learning strategy, which
enefits the control of the balance between exploration and exploitation.
urthermore, by dynamically adjusting the sub-swarm size s during the
ptimization process, APSO-DEE can get a slow convergence pressure
nd pay more attention on exploration in the early optimization stage,
hile just a few solutions with high qualities will be exploited in the

ater stage resulting in a fast convergence pressure. Therefore, the pro-
osed APSO-DEE is capable to dynamically balance the exploration and
xploitation during the optimization process. 

In addition, it should be noted that many methods of handling infea-
ible solutions have been proposed to improve the performance of EAs
62] . However, as the focus of the proposed algorithm is on the decou-
ling of the exploration and exploitation of cPSO, we chose to implement
 simple solution: the decision variables in the particles in APSO-DEE
re directly replaced with the corresponding decision space boundaries
f they are out of the domain of the decision space. The pseudo-code of
PSO-DEE is shown in Algorithm 3 . 

. Theoretical analysis of APSO-DEE 

.1. Convergence analysis 

Convergence stability for EAs is of vital importance. A lot of stud-
es can be found in current literature, several of which are conducted
ithout the stagnation assumption [63,64] . Considering that the explo-

ation and exploitation exemplars in APSO-DEE are selected randomly,
his paper investigates the convergence of E ( p ( t )) in APSO-DEE based on
he method proposed by [63] , where E ( p ( t )) represents the expectation
osition of an arbitrary particle in APSO-DEE at generation t . According
o the theory in [63] , the convergence proof is shown as follows. 

Since the positions of particles are updated for each dimension inde-
endently, the 1 − D space convergence stability analysis is presented as
ollows according to [63] . For simplicity, the updating of a particle at
eneration t can be rewritten as (14) and (15) . 

 ( 𝑡 + 1) = 𝜔 ( 𝑝 ( 𝑡 ) − 𝑝 ( 𝑡 − 1)) + 𝜙𝑟 1 ( 𝑒 1 − 𝑝 ( 𝑡 )) + 𝑟 2 ( 𝑒 2 − 𝑝 ( 𝑡 )) (14)

 ( 𝑡 + 1) = 𝑝 ( 𝑡 ) + 𝑣 ( 𝑡 + 1) (15)

Based on (14) and (15) , 𝑝 ( 𝑡 + 1) can be represented by (16) , where
 = 1 + 𝜔 − 𝜙𝑟 1 − 𝑟 2 . 

 ( 𝑡 + 1) = 𝑙𝑝 ( 𝑡 ) − 𝜔𝑝 ( 𝑡 − 1) + 𝜙𝑟 1 𝑒 1 + 𝑟 2 𝑒 2 (16) 

Then the expectation of 𝑝 ( 𝑡 + 1) is shown in (17) , where 𝜇𝜔 , 𝜇𝑟 1 , 𝜇𝑟 2 ,

𝑒 1 
and 𝜇𝑒 2 are the expectation values of the corresponding variables. 

( 𝑝 ( 𝑡 + 1)) = 𝐸 ( 𝑙) 𝐸 ( 𝑝 ( 𝑡 )) − 𝜇𝜔 𝐸( 𝑝 ( 𝑡 − 1)) + 𝜙𝜇𝑟 1 
𝜇𝑒 1 

+ 𝜇𝑟 2 
𝜇𝑒 2 

(17) 

Based on (17) , a recurrence relation can be obtained as shown in
18) . 
 

𝐸( 𝑝 ( 𝑡 + 1)) 
𝐸( 𝑝 ( 𝑡 )) 

] 
= 

[ 
𝐸( 𝑙) − 𝜇𝜔 
1 0 

] [ 
𝐸( 𝑝 ( 𝑡 )) 
𝐸( 𝑝 ( 𝑡 − 1)) 

] 
+ 

[ 
𝜙𝜇𝑟 1 
𝜇𝑒 1 

+ 𝜇𝑟 2 
𝜇𝑒 2 

0 

] 
(18) 

For simplicity, we define M as shown in (19) . 

 = 

[ 
𝐸( 𝑙) − 𝜇𝜔 
1 0 

] 
(19) 

According to [63] , the necessary and sufficient condition to ensure
he convergence of E ( p ( t )) is that the magnitude of the eigenvalues of M ,
𝜆1 , 𝜆2 | = |( 𝐸( 𝑙) ± 

√
𝐸( 𝑙) 2 − 4 𝜇𝜔 )∕2 |, should be smaller than 1. Since 𝜔 ,

 1 , and r 2 are randomly generated within (0,1) in this paper. Therefore,

𝜔 , 𝜇𝑟 1 and 𝜇𝑟 2 are 1/2. Consequently, the necessary and sufficient con-
ition for convergence of E ( p ( t )) of an arbitrary particle can be shown
n (20) . 

2 − 𝜙 ± 

√
𝜙2 − 4 𝜙 − 4 
4 

| < 1 (20) 

By analysing (20) , the necessary and sufficient condition for conver-
ence of E ( p ( t )) of an arbitrary particle is shown in (21) . The detailed
nalyses of (20) can be found in the appendix. 

1 < 𝜙 < 5 (21) 

Based on this, only −1 < 𝜙 < 5 will be employed in this paper to
nsure the convergence of E ( p ( t )) of an arbitrary particle in APSO-DEE.
owever, it must be noted that the above proof does not necessarily
nsure the convergence to the global optimum. 
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.2. The computational complexity analysis 

For the computation complexity analysis for APSO-DEE, the compu-
ational complexity proof in [22] is considered. Since all the algorithms
hould use FEs as the terminal criterion in numerical competition, the
dopted method assumes using the same swarm size N to compare the
omputational complexity per generation between different algorithms.
ith considering that the learning structure of cPSO and APSO-DEE both

nclude three components, only the main additional computational cost
ntroduced by the designed learning strategy at each generation is con-
idered in this paper. According to the proof introduced by Qiang et al.
22] , the following three aspects are taken into consideration, to wit,
he algorithm structure, the computation cost at each generation, and
he required memory cost. 

First, APSO-DEE inherits the structure of the cPSO which is con-
enient for implementation. Second, the extra computational cost at
ach generation compared to the cPSO is through the addition of
lgorithms 1 and 2 as shown in lines 6 and 7 in Algorithm 3 . To be
pecific, in Algorithm 1 , it costs 𝑂 ( 𝑁𝑙 𝑜𝑔 2 ( 𝑁) + 2 𝑁) to compute LSD and
dentify P exploration and P updated ; for Algorithm 2 , O (2 N ) is the cost to find
he best particle in each sub-swarm and identify P exploitation and P updated .
herefore, the additional computational cost for each generation is just
 ( 𝑁𝑙 𝑜𝑔 2 ( 𝑁) + 4 𝑁) compared to cPSO. Finally, because APSO-DEE does
ot need the information of p best , it has lower memory requirements than
PSO. 

In summary, it can be concluded that APSO-DEE remains computa-
ionally efficient and it is more conducive to saving memory space than
PSO. 

. Experimental studies 

In this part, two widely used large scale optimization test suites pro-
ided by CEC 2010 and CEC 2013 are adopted to test APSO-DEE. The
enchmark definitions can be found in [65,66] . First, the comparisons
etween APSO-DEE and six other state-of-the-art large scale optimiza-
ion EAs are presented to test APSO-DEE; second, we evaluate the effec-
iveness of the proposed exploration and exploitation learning strate-
ies; finally, for a closer investigation of APSO-DEE, a parameter sensi-
ivity analysis is conducted. All the experiments are executed on a PC
ith Intel Core i7-8700k CPU, and Microsoft Windows 10 Enterprise 64
it operating system. The algorithms are written for and run in Matlab
018a. 

Note that for saving computational resources, except for the com-
arison experiments, the other experiments are conducted based on six
ypical functions of F 1 , F 3 , F 6 , F 11 , F 14 , F 15 selected from CEC 2013,
hich cover the unimodal functions ( F 1 , F 11 , F 14 , F 15 ), the multimodal

unctions ( F 3 , F 6 ), the fully separable functions ( F 1 , F 3 ), the partial sep-
rable functions ( F 6 , F 11 ), an overlapping function ( F 14 ) and a nonsep-
rable function ( F 15 ). 

.1. Empirical comparisons 

.1.1. Compared algorithms 

To confirm the validation of the experiments, APSO-DEE is com-
ared to 6 peer algorithms including CSO [6] , SLPSO [31] and DLLSO
22] , MA-SW-CHAINs [51] , DECC-DG2 [38] , and MMO-CC [32] . The
rst three algorithms are cPSO variants, where DLLSO is proposed in
018; MA-SW-CHAINs is the winner of the CEC 2010 large scale opti-
ization competition; DECC-DG2 and MMO-CC are two CC framework

ased EAs. MOS [52] and SHADE-ILS [58] are two competitive methods
or LSOPs. However, since only the average results of them can be found
nd the two algorithms are difficult to be coded for implementation, the
omparisons between APSO-DEE and the two algorithms are not made
n this paper. 
.1.2. Experimental settings 

To ensure a fair comparison, FEs is adopted as the terminal condition
nd the maximum FEs is set to 3 𝐸 + 06 as recommended by Qiang et al.
22] . According to the results in Section 5.4 , the APSO-DEE parameters
and swarm size N are set to 0.3 and 1000, respectively. S is set as {2,

, 8, 10, 20, 25, 40, 50}. For the other six peer algorithms, the param-
ters are set as recommended in the corresponding reference papers. In
ddition, as recommended by Qiang et al. [22,32] , Wilcoxon rank sum
est is adopted to do the statistical analysis between APSO-DEE and the
ther peer algorithms, where the significant level is set to 0.05 and the
 value is the significance factor [22] . 

.1.3. Results 

Tables 1 and 2 show the experimental results on 1000-dimensional
EEE CEC 2010 and IEEE CEC 2013 benchmark functions. The best re-
ults of the average performance are highlighted by gray; “ + ”, “ - ”,
nd “ = ” above the p values mean that the performance of APSO-DEE
s significantly better than, significantly worse than, and statistically
quivalent to the compared algorithm on the corresponding benchmark;
he p values will be marked in bold font if APSO-DEE performs signifi-
antly better than the corresponding algorithms; w / l / t at the bottom of
he table represent that how many times APSO-DEE wins/loses/ties in
he competitions with comparing to the corresponding algorithms. Note
hat due to the heavy time consuming, Ma-Sw-CHAINs is only run for
0 times on the CEC 2013 benchmarks, the corresponding results of Ma-
w-CHAINs on CEC 2010 benchmarks shown in Table 1 are cited from
51] , where the Wilcoxon rank sum test between Ma-Sw-CHAINs and
PSO-DEE is not conducted. 

From the results shown in Table 1 one can find that for the average
erformance competition, APSO-DEE wins on 10 functions over all other
ix algorithms out of the 20 benchmarks, and ranks in second on F 1 , F 4 ,
 8 , F 10 and F 19 . Turn to the 12 multimodal benchmarks of F 2 , F 3 , F 5 , F 6 ,
 8 , F 10 , F 11 , F 13 , F 15 , F 16 , F 18 and F 20 , APSO-DEE wins on 9 functions.
or the rest 8 unimodal benchmarks, APSO-DEE ranks in top three for 5
imes. For the 15 partially separable benchmarks of F 4 to F 18 , APSO-DEE
ins on 8 functions and ranks in top three for 12 times. For the fully

eparable benchmarks of F 19 and F 20 , APSO-DEE wins on F 2 and ranks
n second on F 19 . 

The Wilcoxon rank sum test results in the bottom of Table 1 also
how the competitive performance of APSO-DEE. To be specific, APSO-
EE outperforms CSO, SLPSO, DLLSO, DECC-DG2 and MMO-CC for 19,
8, 16, 16 and 13 times, respectively. Besides, the average performance
ompetition between Ma-Sw-CHAINs and APSO-DEE obviously shows
he superior stability of APSO-DEE over Ma-Sw-CHAINs, where APSO-
EE wins Ma-Sw-CHAINs for 15 times. 

Table 2 shows the corresponding results on benchmarks from CEC
013. For the average performance, APSO-DEE wins on 9 benchmarks
ver all other six algorithms out of the 15 benchmarks and is only
lightly outperformed by DLLSO on F 1 . With a deep insight, APSO-DEE
utperforms other algorithms for 5 benchmarks out of the 8 multimodal
unctions of F 2 , F 3 , F 5 , F 6 , F 7 , F 9 , F 10 , F 12 ; for the 7 unimodal functions,
PSO-DEE wins for 4 times. For the competition on partially separable
enchmarks of F 4 to F 12 , APSO-DEE wins for 6 times. APSO-DEE also
hows competitive results on the overlapping and non-separable bench-
arks. 

The statistical results obtained by Wilcoxon rank sum test in the bot-
om of Table 2 also show the competitive performance of APSO-DEE.
o be specific, APSO-DEE outperforms CSO, SLPSO, DLLSO, DECC-DG2,
MO-CC and Ma-Sw-CHAINs for 12, 13, 11, 12, 13 and 10 times, re-

pectively. 
To show the convergence of these algorithms, the convergence

urves of APSO-DEE and the six selected EAs are recorded as shown in
igs. 4 and 5 . The results show the competitive convergence of APSO-
EE in comparison with the other algorithms. Especially in the middle
nd later optimization stages, APSO-DEE has a competitive convergence
peed with comparing to other EAs. 
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Fig. 4. Convergence profiles of different algorithms obtained 

on the CEC 2010 test suite with 1000 dimensions. Note that 

the logarithmic values of the average results obtained by 30 

independent runs are shown in the above figures for clarity. 
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Fig. 5. Convergence profiles of different algorithms obtained on the CEC 2013 test suite with 1000 dimensions. Note that the logarithmic values of the average 

results obtained by 30 independent runs are shown in the above figures for clarity. 
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Table 1 

The experimental results of 1000-dimensional IEEE CEC 2010 benchmark functions with fitness evaluations of 3e6. 

Function Quality CSO [6] SLPSO [31] DLLSO [22] DECCDG2 [38] MMOCC [32] MASWCHAINs [51] APSO-DEE 

F 1 Mean 3.01E-17 1.82E-14 2.64E-22 2.25E + 01 4.75E-20 2.10E-14 1.06E-20 

Std 3.17E-19 9.90E-16 8.93E-24 9.76E + 00 1.87E-21 1.99E-14 2.55E-22 

p-value 1.42E-09 + 1.41E-09 + 1.41E-09 − 1.42E-09 + 1.42E-09 + - - 

F 2 Mean 6.28E + 02 3.01E + 03 9.69E + 02 4.45E + 03 1.42E + 03 8.10E + 02 5.86E + 02 

Std 5.13E + 00 7.85E + 01 7.95E + 00 2.65E + 01 1.49E + 01 5.88E + 01 4.43E + 00 

p-value 1.49E-06 + 1.41E-09 + 1.42E-09 + 1.42E-09 + 1.42E-09 + - - 

F 3 Mean 1.20E-12 1.76E-10 9.40E-14 1.66E + 01 3.14E-13 7.28E-13 3.83E-13 

Std 3.76E-15 3.98E-12 1.43E-15 5.17E-02 3.39E-15 3.40E-13 6.86E-15 

p-value 1.34E-09 + 1.39E-09 + 1.10E-09 − 1.39E-09 + 2.71E-09 − - - 

F 4 Mean 1.51E + 12 1.31E + 12 7.89E + 11 7.75E + 11 7.27E + 06 3.53E + 11 2.75E + 11 

Std 3.51E + 10 3.96E + 10 3.20E + 10 5.87E + 10 2.12E + 05 3.12E + 10 7.76E + 09 

p-value 1.42E-09 + 1.41E-09 + 1.42E-09 + 9.29E-09 + 1.42E-09 − - - 

F 5 Mean 1.25E + 07 1.12E + 07 1.33E + 07 1.38E + 08 3.42E + 08 1.68E + 08 9.91E + 06 

Std 3.90E + 05 6.42E + 05 5.57E + 05 4.05E + 06 2.89E + 07 1.04E + 08 3.96E + 05 

p-value 7.89E-04 + 1.30E-01 = 4.26E-06 + 1.42E-09 + 1.42E-09 + - - 

F 6 Mean 8.70E-07 2.33E-07 2.27E-01 1.54E + 01 5.96E-01 8.14E + 04 3.73E-09 

Std 6.39E-09 1.48E-09 1.16E-01 8.67E-02 3.30E-01 2.84E + 05 9.06E-12 

p-value 1.42E-09 + 1.41E-09 + 1.92E-09 + 1.42E-09 + 1.40E-09 + - - 

F 7 Mean 1.78E + 04 6.98E + 04 1.50E + 03 1.26E + 02 1.90E + 10 1.03E + 02 6.18E-02 

Std 1.19E + 03 2.76E + 03 1.32E + 03 5.07E + 01 1.37E + 09 8.70E + 01 7.92E-03 

p-value 1.42E-09 + 1.42E-09 + 1.42E-09 + 1.42E-09 + 1.42E-09 + - - 

F 8 Mean 3.69E + 07 3.85E + 07 2.32E + 07 7.98E + 05 9.64E + 07 1.41E + 07 7.01E + 06 

Std 1.38E + 04 1.98E + 06 4.51E + 04 3.19E + 05 4.52E + 07 3.68E + 07 3.18E + 05 

p-value 1.42E-09 + 1.13E-09 + 1.42E-09 + 1.42E-09 − 4.73E-01 = - - 

F 9 Mean 4.89E + 07 5.71E + 07 3.89E + 07 6.86E + 07 1.01E + 02 1.41E + 07 1.75E + 07 

Std 5.36E + 05 9.24E + 05 7.41E + 05 1.54E + 06 1.76E + 01 1.15E + 06 2.07E + 05 

p-value 1.42E-09 + 1.41E-09 + 1.42E-09 + 1.42E-09 + 1.42E-09 − - - 

F 10 Mean 4.66E + 02 8.91E + 03 8.96E + 02 4.73E + 03 1.69E + 03 2.07E + 03 5.98E + 02 

Std 4.15E + 00 2.01E + 01 9.80E + 00 2.59E + 01 1.10E + 01 1.44E + 02 4.23E + 00 

p-value 1.42E-09 − 1.39E-09 + 1.42E-09 + 1.42E-09 + 1.42E-09 + - - 

F 11 Mean 1.32E-11 3.29E-09 3.28E + 00 1.07E + 01 3.72E + 00 3.80E + 01 8.27E-13 

Std 5.49E-14 1.45E-10 7.32E-01 1.72E-01 1.41E + 00 7.35E + 00 2.04E-14 

p-value 1.41E-09 + 1.41E-09 + 2.56E-08 + 1.41E-09 + 1.41E-09 + - - 

F 12 Mean 4.97E + 04 5.40E + 05 1.44E + 04 4.48E + 03 3.64E-23 3.62E-06 1.62E + 04 

Std 6.14E + 02 1.09E + 04 1.40E + 02 2.08E + 02 1.70E-24 5.92E-07 3.86E + 02 

p-value 1.42E-09 + 1.41E-09 + 1.43E-04 − 1.42E-09 − 1.42E-09 − - - 

F 13 Mean 1.21E + 03 1.23E + 03 9.31E + 02 1.51E + 03 1.48E + 04 1.25E + 03 5.69E + 02 

Std 1.02E + 02 9.75E + 01 7.68E + 01 1.90E + 02 9.08E + 03 5.72E + 02 2.47E + 01 

p-value 1.99E-07 + 5.02E-07 + 5.12E-06 + 7.38E-09 + 1.65E-06 + - - 

F 14 Mean 1.74E + 08 2.71E + 08 1.30E + 08 4.49E + 08 5.68E-19 3.11E + 07 5.95E + 07 

Std 1.48E + 06 2.88E + 06 1.86E + 06 5.73E + 06 1.39E-19 1.93E + 06 5.51E + 05 

p-value 1.42E-09 + 1.41E-09 + 1.42E-09 + 1.42E-09 + 1.42E-09 − - - 

F 15 Mean 9.65E + 03 1.02E + 04 8.45E + 02 6.07E + 03 2.02E + 03 2.74E + 03 6.41E + 02 

Std 7.72E + 00 1.33E + 01 9.21E + 00 1.65E + 01 2.22E + 01 1.22E + 02 4.08E + 00 

p-value 1.42E-09 + 7.98E-10 + 1.42E-09 + 1.42E-09 + 1.42E-09 + - - 

F 16 Mean 2.31E-11 3.73E-09 3.93E + 00 5.37E-11 2.64E + 01 9.98E + 01 7.16E-13 

Std 7.54E-14 1.16E-10 4.93E-01 8.95E-13 2.76E + 00 1.40E + 01 2.23E-14 

p-value 1.41E-09 + 1.41E-09 + 2.55E-08 + 1.40E-09 + 1.41E-09 + - - 

F 17 Mean 2.31E + 05 2.54E + 06 7.91E + 04 7.29E + 04 5.07E-23 1.24E + 00 9.37E + 04 

Std 2.07E + 03 3.62E + 04 8.99E + 02 1.11E + 03 7.59E-24 1.25E-01 1.34E + 03 

p-value 1.42E-09 + 1.41E-09 + 1.84E-08 − 2.57E-09 − 1.42E-09 − - - 

F 18 Mean 2.39E + 03 2.84E + 03 2.55E + 03 1.24E + 03 3.32E + 04 1.30E + 03 1.21E + 03 

Std 1.57E + 02 3.83E + 02 1.17E + 02 2.45E + 01 4.97E + 03 4.36E + 02 4.43E + 01 

p-value 2.57E-08 + 4.00E-08 + 2.29E-09 + 1.40E-01 = 1.42E-09 + - - 

F 19 Mean 5.79E + 06 1.07E + 07 1.72E + 06 1.88E + 06 1.58E + 07 2.85E + 05 1.42E + 06 

Std 6.03E + 04 1.61E + 05 2.30E + 04 1.37E + 04 3.05E + 05 1.78E + 04 1.37E + 04 

p-value 1.42E-09 + 1.40E-09 + 2.57E-09 + 1.42E-09 + 1.42E-09 + - - 

F 20 Mean 1.29E + 03 1.04E + 03 1.71E + 03 9.86E + 03 1.66E + 03 1.07E + 03 1.02E + 03 

Std 2.39E + 01 1.28E + 01 2.47E + 01 2.63E + 03 4.53E + 02 7.29E + 01 9.89E + 00 

p-value 1.59E-09 + 1.86E-01 = 1.41E-09 + 1.41E-09 + 2.17E-03 + - - 

w/l/t 19/1/0 18/0/2 16/0/4 16/3/1 13/6/1 -/-/- - 
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Although APSO-DEE is not able to outperform all the algorithms in
urrent literature such as MOS [52] and SHADE-ILS [58] by compar-
ng the average results on CEC 2013 benchmarks, APSO-DEE holds two
ain advantages. On the one hand, APSO-DEE is designed with a simpler

tructure; on the other hand, the decoupling of exploration and exploita-
ion in cPSO is solved in APSO-DEE, which provides a novel perspective
or further studying PSO as well as other kinds of EAs. 

In conclusion, APSO-DEE performs competitive in large scale opti-
ization both in results and convergence speed. This is due to the pro-
osed learning strategies and the adaptive multi-swarm size adjustment.
n the one hand, APSO-DEE searches the decision space with a low con-
ergence pressure and emphasizes more on exploration in the early op-
imization stage, which helps APSO-DEE potentially find more promis-
ng solutions. On the other hand, the convergence pressure will be in-
reased in the later stage focusing APSO-DEE on refining the searched
romising solutions. Therefore, APSO-DEE achieves a reasonable bal-
nce between exploration and exploitation in the whole optimization
rocess. 
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Table 2 

The experimental results of 1000-dimensional IEEE CEC 2013 benchmark functions with fitness evaluations of 3e6. 

Function Quality CSO [6] SLPSO [31] DLLSO [22] DECCDG2 [38] MMOCC [32] MASWCHAINs [51] APSO-DEE 

F 1 Mean 3.68E-17 3.70E-14 4.32E-22 8.65E + 05 4.82E-20 8.49E-13 4.14E-20 

Std 3.89E-19 1.44E-15 3.88E-23 2.18E-13 2.27E + 05 1.30E-21 3.62E-21 

p-value 1.41E-09 + 1.42E-09 + 1.41E-09 − 1.41E-09 + 1.27E-02 + 1.42E-09 + - 

F 2 Mean 7.07E + 02 6.70E + 03 1.15E + 03 1.41E + 04 1.51E + 03 1.22E + 03 6.31E + 02 

Std 7.17E + 00 4.98E + 01 1.31E + 01 3.03E + 02 8.43E + 00 2.28E + 01 4.49E + 00 

p-value 9.29E-09 + 1.42E-09 + 1.42E-09 + 1.42E-09 + 1.42E-09 + 1.42E-09 + - 

F 3 Mean 2.16E + 01 2.16E + 01 2.16E + 01 2.06E + 01 2.01E + 01 2.14E + 01 2.16E + 01 

Std 1.39E-03 1.14E-03 1.23E-03 1.69E-03 2.36E-03 1.12E-02 8.95E-04 

p-value 4.73E-01 = 5.01E-02 = 1.07E-01 = 1.42E-09 − 1.42E-09 − 1.42E-09 − - 

F 4 Mean 1.14E + 10 1.20E + 10 5.99E + 09 2.51E + 08 5.15E + 11 4.58E + 09 2.05E + 09 

Std 2.65E + 08 5.54E + 08 2.98E + 08 1.89E + 07 9.71E + 10 4.91E + 08 5.73E + 07 

p-value 1.42E-09 + 1.42E-09 + 1.42E-09 + 1.29E-09 − 1.42E-09 + 1.19E-03 + - 

F 5 Mean 7.38E + 05 7.58E + 05 7.30E + 05 2.74E + 06 2.42E + 06 1.87E + 06 6.50E + 05 

Std 2.64E + 04 2.14E + 04 1.98E + 04 5.66E + 04 1.14E + 05 6.13E + 04 2.18E + 04 

p-value 4.34E-03 + 6.42E-05 + 1.67E-03 + 1.16E-09 + 1.42E-09 + 1.42E-09 + - 

F 6 Mean 1.06E + 06 1.06E + 06 1.06E + 06 1.06E + 06 1.06E + 06 1.01E + 06 1.06E + 06 

Std 1.91E + 02 1.64E + 02 2.31E + 02 4.50E + 02 6.41E + 02 3.06E + 03 1.82E + 02 

p-value 3.13E-01 = 1.56E-03 + 4.73E-01 = 6.08E-03 − 3.19E-03 + 1.42E-09 − - 

F 7 Mean 8.16E + 06 1.73E + 07 1.74E + 06 8.93E + 07 1.28E + 10 3.45E + 06 5.49E + 05 

Std 4.77E + 05 1.49E + 06 1.67E + 05 7.16E + 06 1.07E + 09 2.53E + 05 4.59E + 04 

p-value 1.42E-09 + 1.42E-09 + 5.55E-08 + 1.40E-07 + 1.42E-09 + 5.56E-07 + - 

F 8 Mean 3.15E + 14 2.89E + 14 1.17E + 14 1.01E + 14 1.54E + 14 4.85E + 13 4.40E + 13 

Std 1.11E + 13 1.75E + 13 7.87E + 12 1.31E + 13 4.45E + 13 2.03E + 12 2.27E + 12 

p-value 1.42E-09 + 1.42E-09 + 4.00E-08 + 9.61E-07 + 3.84E-04 + 1.57E-01 = - 

F 9 Mean 4.42E + 07 4.44E + 07 4.32E + 07 3.08E + 08 1.76E + 08 1.07E + 08 3.80E + 07 

Std 1.56E + 06 1.47E + 06 1.28E + 06 1.39E + 07 7.03E + 06 3.36E + 06 1.23E + 06 

p-value 8.32E-03 + 2.81E-03 + 8.32E-03 + 1.40E-09 + 1.42E-09 + 1.42E-09 + - 

F 10 Mean 9.40E + 07 9.43E + 07 9.40E + 07 9.44E + 07 9.38E + 07 9.18E + 07 9.40E + 07 

Std 4.23E + 04 3.99E + 04 4.63E + 04 5.82E + 04 1.02E + 05 2.12E + 05 4.25E + 04 

p-value 6.55E-01 = 5.94E-04 + 6.84E-01 = 3.29E-05 + 4.36E-02 − 1.80E-09 − - 

F 11 Mean 3.56E + 08 9.98E + 09 1.82E + 08 9.93E + 09 5.66E + 12 2.19E + 08 6.85E + 07 

Std 1.47E + 07 1.82E + 09 9.42E + 06 3.26E + 09 1.09E + 12 5.96E + 06 2.80E + 06 

p-value 1.42E-09 + 1.42E-09 + 2.29E-09 + 1.42E-09 + 1.42E-09 + 1.42E-09 + - 

F 12 Mean 1.38E + 03 1.13E + 03 1.78E + 03 5.81E + 07 1.14E + 11 1.25E + 03 1.12E + 03 

Std 2.40E + 01 2.12E + 01 3.06E + 01 1.53E + 07 6.32E + 10 2.11E + 01 1.27E + 01 

p-value 1.46E-08 + 8.46E-01 = 1.42E-09 + 1.05E-09 + 7.42E-03 + 1.38E-05 + - 

F 13 Mean 8.05E + 08 2.05E + 09 2.89E + 08 6.03E + 08 1.32E + 12 1.98E + 07 6.74E + 07 

Std 6.56E + 07 2.13E + 08 2.41E + 07 2.69E + 07 2.88E + 11 3.64E + 05 6.08E + 06 

p-value 1.42E-09 + 1.42E-09 + 7.38E-09 + 1.09E-09 + 1.42E-09 + 2.30E-08 − - 

F 14 Mean 6.95E + 09 1.60E + 10 9.21E + 07 1.11E + 09 4.12E + 11 1.36E + 08 4.94E + 07 

Std 9.23E + 08 1.62E + 09 1.39E + 07 2.10E + 08 1.21E + 11 4.22E + 06 3.77E + 06 

p-value 1.42E-09 + 1.42E-09 + 1.95E-04 + 1.42E-09 + 8.29E-07 + 2.90E-09 + - 

F 15 Mean 1.65E + 07 6.68E + 07 4.25E + 06 7.11E + 06 4.05E + 08 5.71E + 06 3.07E + 06 

Std 2.20E + 05 1.01E + 06 5.52E + 04 2.70E + 05 1.91E + 07 1.51E + 05 5.37E + 04 

p-value 1.42E-09 + 1.42E-09 + 1.80E-09 + 9.30E-10 + 1.42E-09 + 1.42E-09 + - 

w/l/t 12/0/3 13/0/2 11/1/3 12/3/0 13/2/0 10/4/1 - 
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.2. The effectiveness of the exploration learning strategy 

In this section, several experiments are conducted to demonstrate the
iversity preservation ability of the proposed exploration learning strat-
gy. As recommended by Qiang et al. [22] , the diversity is computed
ccording to (22) and (23) . 

In the experiments, 𝜙 is varied between 0.3 to 0.6 with a step of 0.1
hile the swarm size N and sub-swarm size s are set to 1000 and 10,

espectively, to show the impacts of 𝜙 on swarm diversity. The average
esults of 30 independent runs on each function are shown in Fig. 6 . 

𝑡𝑑( 𝑃 ) = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

√ √ √ √ 

𝐷 ∑
𝑑=1 

( 𝑝 𝑑 
𝑖 
− �̄� 𝑑 
𝑖 
) 2 (22)

̄ 𝑑 = 

1 
𝑁 

𝑁 ∑
𝑖 =1 
𝑥 𝑑 
𝑖 

(23)

Fig. 6 clearly confirms that the diversity increases with increasing of
on all the six functions. This proves the applicability of the proposed

iversity control method for diversity preservation, which reflects the
ffectiveness of the proposed exploration learning strategy. With these
ndings, it is clear that the proposed strategy is able to manage the
iversity for exploration with effectiveness. 

.3. The effectiveness of the exploitation learning strategy 

To investigate the effectiveness of the proposed exploitation learning
trategy, the fitness curves are shown in Fig. 7 . In the experiments, the
warm size N and 𝜙 are set to 1000 and 0.3, respectively. The sub-swarm
izes s are {2, 10, 20, 60} to show the influences on the convergence
peed of s . Based on our previous findings, the convergence speed dif-
erences can not be shown clearly by the convergence curves obtained
ith too large value of FEs . Therefore, we show the results obtained with
Es of 1 . 2 𝐸 + 05 in Fig. 7 . 

Fig. 7 shows clearly that (except for F 3 ) the convergence speed in-
reases with increasing sub-swarm size s . This can be explained by that
ith the increasing of s , the exploitation exemplars will get more promis-

ng, and more particles tend to exploit around one exploitation exemplar
eading to a higher convergence pressure. Therefore, the convergence
ressure in APSO-DEE for exploitation during the optimization process
an be effectively controlled by using the proposed adaptive sub-swarm
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Fig. 6. Swarm diversity comparisons on the selected six functions with FEs of 3 𝐸 + 06 ( 𝑁 = 1000 , 𝑠 = 10 ). Note that the logarithmic values of the average results 

obtained by 30 independent runs are shown in the above figures for clarity. 
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ize adjustment which dynamically changes the sub-swarm size from
mall to large. 

.4. Parametersensitivity analyses 

Due to the adopted adaptive sub-swarm size adjustment, APSO-DEE
nly has two parameters, N and 𝜙. For a better understanding of the
roposed APSO-DEE, the sensitivity analyses of the swarm size N and
arameter 𝜙 are presented. 

.4.1. Swarm size N 

Fig. 8 shows the results of APSO-DEE on the six selected functions
ith different settings of N , where 𝜙 is set to 0.3. Apparently, except
n F 1 , APSO-DEE is not sensitive to the settings of N . It is noteworthy
hat a setting of N to {800, 1000, 1200} outperforms other settings in
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Fig. 7. Fitness comparisons on the selected six functions with FEs of 1 . 2 𝐸 + 05 ( 𝑁 = 1000 , 𝜙 = 0 . 3 ). Note that the logarithmic values of the average results obtained 

by 30 independent runs are shown in the above figures for clarity. 
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Table 3 

The Friedman ranking test results on N . 

N Friedman ranking 

400 3.33 

600 3.67 

800 2.50 

1000 2.83 

1200 2.67 
ost of the cases. The Friedman ranking test is conducted and the results
re shown in Table 3 which demonstrate that N of {800, 1000, 1200}
s more suitable for APSO-DEE. Taking into consideration that a large
warm size can ensure the concurrency of EAs, N of {1000, 1200} are
uggested in this paper. 

.4.2. Exploration parameter 𝜙

Fig. 9 shows the results of APSO-DEE on the six selected functions
ith different settings of 𝜙, where N is set to 1000. As it depicted in
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Fig. 8. Average optimization results obtained under different settings of N ( 𝜙 = 0 . 3 ). Note that the logarithmic values of the average results obtained by 30 indepen- 

dent runs are shown in the above figures for clarity. 
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Table 4 

The Friedman ranking test results on 𝜙. 

𝜙 Friedman ranking 

0.1 2.83 

0.2 2.33 

0.3 2.83 

0.4 3.33 

0.5 4.50 

0.6 5.17 
ig. 9 , the results are sensitive to 𝜙 on F 1 , where a small 𝜙 is more suit-
ble because F 1 is a simple convex function for which the exploitation
hould be emphasized more in the optimization process. For the other
ve more complex problems, APSO-DEE is not sensitive to 𝜙. Setting 𝜙
o {0.1, 0.2, 0.3} outperforms others in most cases. A Friedman ranking
est is also conducted for 𝜙. The results are shown in Table 4 , which in-
icates the competitiveness of APSO-DEE with the 𝜙 of {0.1, 0.2, 0.3}.
o ensure a balance between exploration and exploitation, 𝜙 = 0 . 3 is
uggested in this paper. 
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Fig. 9. Average optimization results obtained under different settings of 𝜙 ( N = 1000). Note that the logarithmic values of the average results obtained by 30 

independent runs are shown in the above figures for clarity. 
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.4.3. Correlation between N and 𝜙

Although the performance of APSO-DEE is not sensitive to both N
nd 𝜙 in most cases as shown in the above results, it is worth to show
he correlation between N and 𝜙 to further investigate the characteristics
f APSO-DEE. The experiments results of different combinations of N
nd 𝜙 obtained by 30 independent runs are shown in Table 5 . From the
btained results one can see that when 𝜙 is larger than 0.5, N should be
djusted down to 400 to get promising solutions; as 𝜙 decreases, good
olutions can be searched by increasing N . The reason is that a large
warm size will result in a high diversity [22] , therefore, a large swarm
ize should cooperate with a small 𝜙 to balance the exploration and
xploitation in the search process. In summary, the findings indicate
hat to get good results, a large N is necessary when 𝜙 is small and vice
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Table 5 

The experimental results obtained by APSO-DEE, where N is selected in {400, 600, 800, 1000, 

1200} and 𝜙 varies from 0.2 to 0.6. The best results of each combination of N and 𝜙 are marked 

in bold font. 

𝜙 Func. N 

400 600 800 1000 1200 

0.2 F 1 5.1171E-15 1.0491E-19 2.6963E-20 2.7851E-20 2.6751E-18 

F 3 2.0558E + 01 2.1594E + 01 2.1599E + 01 2.1596E + 01 2.1591E + 01 

F 6 1.0608E + 06 1.0608E + 06 1.0605E + 06 1.0611E + 06 1.0596E + 06 

F 11 1.1695E + 08 8.6285E + 07 4.6035E + 07 3.8061E + 07 4.9421E + 07 

F 14 3.1277E + 08 5.3370E + 07 3.1169E + 07 3.3580E + 07 4.3760E + 07 

F 15 3.6582E + 06 3.3575E + 06 3.2803E + 06 3.2796E + 06 3.8680E + 06 

0.3 F 1 4.8585E-13 1.4651E-19 3.3858E-20 5.2154E-20 2.8038E-17 

F 3 2.0522E + 01 2.1593E + 01 2.1599E + 01 2.1596E + 01 2.1596E + 01 

F 6 1.0603E + 06 1.0610E + 06 1.0599E + 06 1.0614E + 06 1.0606E + 06 

F 11 1.9023E + 08 8.0700E + 07 6.4855E + 07 6.8369E + 07 9.2170E + 07 

F 14 1.4871E + 08 9.4878E + 07 4.4813E + 07 4.2777E + 07 4.5182E + 07 

F 15 3.8513E + 06 3.6189E + 06 3.0510E + 06 3.1524E + 06 3.5136E + 06 

0.4 F 1 1.5977E-16 1.6045E-19 1.0472E-18 4.2024E-15 1.6754E-11 

F 3 2.0511E + 01 2.1596E + 01 2.1601E + 01 2.1599E + 01 2.1593E + 01 

F 6 1.0598E + 06 1.0613E + 06 1.0603E + 06 1.0617E + 06 1.0617E + 06 

F 1 1 8.9310E + 07 5.9223E + 07 4.6339E + 07 6.5600E + 07 9.3054E + 07 

F 1 4 5.6938E + 07 4.3206E + 07 3.9291E + 07 8.2101E + 07 7.1409E + 07 

F 1 5 4.6439E + 06 3.7272E + 06 4.3805E + 06 4.7951E + 06 6.4888E + 06 

0.5 F 1 3.1484E-14 6.1733E-12 1.6605E-08 1.1495E-05 3.0987E-03 

F 3 2.0859E + 01 2.1597E + 01 2.1592E + 01 2.1595E + 01 2.1598E + 01 

F 6 1.0600E + 06 1.0597E + 06 1.0614E + 06 1.0611E + 06 1.0591E + 06 

F 11 5.7373E + 07 9.3652E + 07 1.2903E + 08 1.7441E + 08 2.8514E + 08 

F 14 4.4626E + 07 8.2921E + 07 1.4374E + 08 4.0139E + 08 8.0410E + 08 

F 15 6.5776E + 06 9.4012E + 06 1.3775E + 07 1.9885E + 07 2.9165E + 07 

0.6 F 1 1.9681E-02 4.4153E + 01 1.8009E + 02 6.2036E + 03 6.0680E + 04 

F 3 2.1569E + 01 2.1591E + 01 2.1599E + 01 2.1596E + 01 2.1598E + 01 

F 6 1.0617E + 06 1.0610E + 06 1.0607E + 06 1.0612E + 06 1.0613E + 06 

F 11 5.7094E + 08 7.9759E + 08 1.3773E + 09 2.8978E + 09 4.4070E + 09 

F 14 3.0481E + 08 8.7425E + 08 1.1977E + 09 3.3076E + 09 5.1836E + 09 

F 15 2.1710E + 07 5.8421E + 07 1.0898E + 08 1.7785E + 08 2.0098E + 08 
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. Conclusion 

This paper addresses the problem that exploration and exploitation
re highly coupled in the existing learning strategies and proposes strate-
ies for balancing these two functions. First, a novel learning structure
ecoupling exploration and exploitation is proposed in this paper, where
he exploration and exploitation operate in different components. This
ovel structure decouples exploration and exploitation at the learning
tructure level. Second, two novel learning strategies are proposed. On
he one hand, we first propose a novel local sparseness degree measure-
ent for exploration which considers both the distribution and conges-

ion of particles. Furthermore, an exploration strategy is put forward
rom the perspective of leading particles to the sparse areas. On the other
and, an adaptive multi-swarm strategy is presented for exploitation to
ynamically divide the whole swarm into several sub-swarms during the
ptimization process. In each sub-swarm, the best particle is selected as
he exploitation exemplar for others to emphasize exploitation. By this
eans, the differences between particles and exemplars can be effec-

ively adjusted, resulting in an explicit management of the convergence
ressure during a run. Finally, by embedding the two novel learning
trategies into the proposed learning structure, APSO-DEE is proposed
n this paper, where the exploration and exploitation are decoupled in
he learning strategies and can be dynamically balanced during the op-
imization process. 

Furthermore, the convergence stability and computation efficiency
f the proposed algorithm are proved theoretically. Comprehensive ex-
eriments demonstrate that the proposed learning strategies are able to
ffectively adjust the swarm diversity and convergence speed, respec-
ively. The comparison results show the competitiveness of the proposed
lgorithm. 
i  

t

In the future work, more intelligent strategies of adjusting the sub-
warm size s and parameter 𝜙 will be investigated for better balance
f exploration and exploitation. The proposed local sparseness degree
easurement is independent of optimization problems and the opera-

ions of cPSO and its variants, it is also an interesting study to test its
ffectiveness in other kinds of EAs. Besides, Due to the simplicities of
he proposed learning structure and the novel learning strategies, it is
exible to hybridize APSO-DEE with other optimization techniques. The
lgorithms are also will be investigated to many other challenge opti-
ization problems in our future work. 
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ppendix A. Appendix 

The detailed analyses of (20) are presented as follows. 

1. If the eigenvalues of (20) are complex roots. 
Then 

𝜙2 − 4 𝜙 − 4 < 0 . (A.1) 

Then 

2 − 2 
√
2 < 𝜙 < 2 + 2 

√
2 . (A.2) 

Given that 

|2 − 𝜙 ± 

√
𝜙2 − 4 𝜙 − 4 | = |2 − 𝜙 ± 

√
4 + 4 𝜙 − 𝜙2 

√
−1 | (A.3)

|2 − 𝜙 ± 

√
𝜙2 − 4 𝜙 − 4 | = |2 − 𝜙 ± 

√
4 + 4 𝜙 − 𝜙2 𝑖 | (A.4)

|2 − 𝜙 ± 

√
𝜙2 − 4 𝜙 − 4 | = 

√ 

(2 − 𝜙) 2 + ( 
√
4 + 4 𝜙 − 𝜙2 ) (A.5)

|2 − 𝜙 ± 

√
𝜙2 − 4 𝜙 − 4 | = 2 

√
2 . (A.6)

Therefore, for ∀𝜙, 

|2 − 𝜙 ± 

√
𝜙2 − 4 𝜙 − 4 
4 

| < 1 . (A.7) 

With considering (A.2) , the feasible domain of 𝜙 under this scenario
are shown in (A.8) . 

2 − 2 
√
2 < 𝜙 < 2 + 2 

√
2 (A.8) 

2. If the eigenvalues of (20) are real roots. 
Then 

𝜙2 − 4 𝜙 − 4 ⩾ 0 . (A.9) 

Then 

𝜙 ⩾ 2 + 2 
√
2 𝑜𝑟 𝜙 ⩽ 2 − 2 

√
2 . (A.10) 

Then for | 2− 𝜙± √𝜙2 −4 𝜙−4 4 | < 1 , (A.11) should be ensured. 

−4 < 2 − 𝜙 ± 

√
𝜙2 − 4 𝜙 − 4 < 4 (A.11) 

For (A.11) , the following four situations should be considered. 
Firstly, 

2 − 𝜙 + 

√
𝜙2 − 4 𝜙 − 4 < 4 . (A.12) 

Then 

𝜙 > −1 . (A.13) 

Secondly, 

2 − 𝜙 + 

√
𝜙2 − 4 𝜙 − 4 > −4 . (A.14) 

Then 

𝜙 < 6 . (A.15) 

Thirdly, 

2 − 𝜙 − 

√
𝜙2 − 4 𝜙 − 4 < 4 . (A.16) 
Then 

𝜙 > −2 . (A.17) 

Finally, 

2 − 𝜙 − 

√
𝜙2 − 4 𝜙 − 4 > −4 . (A.18) 

Then 

𝜙 < 5 . (A.19) 

In summary, the feasible domain of 𝜙 ensuring the con-
ergence stability of E ( p ( t )) can be obtained based on (A.8) ∪
[ (A.13) ∩ (A.15) ∩ (A.17) ∩ (A.19) ] ∩ (A.10) }, which is shown in (21) . 
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