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m education

® Electrical Engineering (Technical University Berlin)
® Tonmeister (music production, University of Arts Berlin)

m professional

® Associate Professor at the
® 2000-2013: CEO at

m background

® audio algorithm design (20+ years)
® commercial music software development (10+ years)
® entrepreneurship (10+ years)
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m audio classification: one of the earliest and seminal tasks in Music Information
Retrieval (MIR)

m includes, e.g.,

music/speech classification
genre classification

musical instrument recognition
mood recognition

music auto-tagging

artist classification
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m audio classification: one of the earliest and seminal tasks in Music Information
Retrieval (MIR)

m includes, e.g.,

music/speech classification
genre classification

musical instrument recognition
mood recognition

music auto-tagging

artist classification

m non-music related

speaker detection
audio event detection
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lJ, J. Burred and A. Lerch, “Hierarchical Automatic Audio Signal Classification,” Journal of the Audio Engineering Society (JAES), vol. 52,

no. 7/8, pp. 724-739, 2004.
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feature representation
® compact and non-redundant
task-relevant

[ ]
® easy to analyze
® eg., MFCCs etc.

lJ, J. Burred and A. Lerch, “Hierarchical Automatic Audio Signal Classification,” Journal of the Audio Engineering Society (JAES), vol. 52,
no. 7/8, pp. 724-739, 2004.
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old work: genre classification Colles

audio . classification, class
signal —"] feature extraction nference — labels
feature representation classification
® compact and non-redundant ® map or convert feature to
® task-relevant comprehensible domain
® easy to analyze ® e.g., Support Vector Machines etc.
® eg., MFCCs etc.

lJ, J. Burred and A. Lerch, “Hierarchical Automatic Audio Signal Classification,” Journal of the Audio Engineering Society (JAES), vol. 52,
no. 7/8, pp. 724-739, 2004.
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neural network based approaches

m no custom-designed features anymore

m learn features from basic inputs (like spectrograms)
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m less required expert-knowledge, more complex systems
m less expert-tweaking, more rigorous experimental requirement

m much
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w&‘, machine learning: generic algorithm mapping
an mput to an output THIS 15 YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN (OLLECT
THE ANSLERS ON THE OTHER SIDE.

WHAT IF THE ANGLIERS ARE LIRONG? J

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.
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insufficient data in music

m music data itself is not scarce (although there
might be copyright issues...)

m consumer annotations are more difficult to
collect, but there are some large collections

m detailed musical annotations are hard to
come by, because
® time consuming and tedious annotation
process
® experts needed for annotations
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semi-supervised learning
® utilize unlabeled data to improve classification

self-supervised representation learning
® utilize pre-trained features to improve classification

reprogramming
® utilize pre-trained model to improve classification
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m observation:
® unlabeled data is readily available
» example: OpenMIC dataset (musical instrument classification)

Data
Point

Guitar Drum Bass Violin Piano Flute
Fully
Labeled v 4 4 X 4 X
Partially
Labeled 4 4 ? X ? ?
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» example: OpenMIC dataset (musical instrument classification)

Data
Point

Guitar Drum Bass Violin Piano Flute
Fully
Labeled v v 4 X 4 X
Partially
Labeled 4 4 ? X ? ?

m goal:

® utilize unlabeled data for training to improve inference
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semi-supervised audio classification
experimental setup: data

m OpenMic:

® 20 classes of musical instruments
® 10s audio snippets (20000)
® 90% of labels are missing

m SONYC Urban Sound Tagging:

® 23 classes of urban noise
® 10s audio snippets (13538 + 4308 + 669)
® 6% of labels are missing

Georgla i\J Center for Music

1

SONYC-UST

9/ 27



about intro data overvie semi-supervised epresentation reprogramming conclusion thanks
[e]e] le]ele]e]

semi-supervised audio classification Georg-aﬁcenterforMusic

. . Tech || Technology
experimental setup: baselines College of Design

m Baseline 0 (B0):

® missing labels are treated as negative labels
® ‘“standard approach”

m Baseline 1 (B1):

® missing labels are masked out of the loss function
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method 1: label enhancing E oo Y

m stage 1:
® assume all missing labels are negative ( , N
® train a teacher system S
- Train
m stage 2: L STAGE )
e R

® predict labels with teacher [L

® train student with combined training set/likely — - :}—» Student
predicted labels {—}_’ Teacher Y

® mask the loss for unlikely negatives

Train
Enhance labels

STAGE 2

2E. Fonseca, S. Hershey, M. Plakal, et al., “Addressing Missing Labels in Large-Scale Sound Event Recognition Using a Teacher-Student
Framework With Loss Masking,” IEEE Signal Processing Letters, vol. 27, pp. 1235-1239, 2020, Conference Name: |EEE Signal Processing Letters,
I1SSN: 1558-2361. DOI:
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m teacher and student are trained simultaneously Supenvised Loss
Student —>» S Y l
m teacher is exponential average (EMA) of L}—E IConsistencyLoss
stu d ent Mean Teacher—) S’

m consistency loss is computed from the teacher
predictions

m student is updated with both consistency loss
and binary cross-entropy loss

3PA Bachman, O. Alsharif, and D. Precup, “Learning with Pseudo-Ensembles,” in Advances in Neural Information Processing Systems, vol. 27,
Curran Associates, Inc., 2014.
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m general observations

0.83 -

® B0 always worse performance 0821 1 0407 I 054 1
.81~ ] i
® B1 much better but can be Nihadils = BESA  aes
outperf d £ 309" g N .
perrorme S oo 2 2062~ LJ .
£ S 034- S
= 0.78 - 2 T S 061 |
| H 0.77 == 0320 5 i i
(i) OpenMic: : . 5 0s0-
0.76 - 90T
® Mean Teacher outperforms Label 059-
EnhanCIng BO B1 LE MT BO B1 LE MT B0 B1 LE MT

(i) (i) (iii)

(iii) SONYC Urban Sound Tagging:

® comparable performance of Mean
Teacher and Label Enhancing

45. Gururani and A. Lerch, “Semi-Supervised Audio Classification with Partially Labeled Data,” in Proceedings of the IEEE International

Symposium on Multimedia (ISM), online: Institute of Electrical and Electronics Engineers (IEEE), 2021.
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results: data dependency =

m removing labels from SONYC Urban
Sound Tagging

0.62
® baselines deteriorate much faster 0.60
@
o 0.58
2
<
2 0.56
§ Model Type
0.54 ® B0
B1
0.52 ® LE
e MT
10 20 40 80

Additional Missing Labels %

55. Gururani and A. Lerch, “Semi-Supervised Audio Classification with Partially Labeled Data,” in Proceedings of the IEEE International

Symposium on Multimedia (ISM), online: Institute of Electrical and Electronics Engineers (IEEE), 2021.
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® question:

® how can we provide extra training information without additional data labels (related
approaches: transfer learning, multi-task learning)

m idea:
® use proven pre-trained features (e.g., VGGish, OpenlL3)
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® question:

® how can we provide extra training information without additional data labels (related
approaches: transfer learning, multi-task learning)

m idea:
® use proven pre-trained features (e.g., VGGish, OpenlL3)

m goals:

® mpart knowledge of pre-trained deep models (VGGish, L3)
® mprove model generalization by utilizing pre-trained features
® use pre-trained features only during training
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] Input .
[ Audio HRepresentationHEnCOderH EmbeddlngH DecoderH Output J
A
Feature Learned
Extrator Feature

m method 1: “Con-Reg”
® make embedding space more similar to embedding space of features

m method 2: “Dis-Reg”
® force distances between pairs of embedding vectors to be similar to feature distances

16 / 27



about intro data overvie semi-supervised representation reprogramming conclusion thanks
[e]e] lelele)

self-supervised representation learning Gem’""ﬁ Center for Music

. . Tech || Technology
experimental setup: baselines College of Design

m standard transfer learning

extract features with pre-trained network
train classifier for new task with feature input

m concatenation:

® concatenate the pre-trained features and the learned embeddings
® classifier has the combined information (trained and pre-trained)
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m DCASE 17:

® 17 audio event classes
® 10s audio snippets (~ 53000)

m MagnaTagATune (MTAT):

® 50 music tags
® 30s audio snippets (/= 21000)
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Methods DCASE 17 (F1) MTAT (PR-AUC)
None VGGish OpenL3 Combined | None VGGish OpenL3 Combined
Won et al. | 0.547 - - - 0.465 - - -
BL transfer - 0.496 0.477 0.501 - 0.454 0.454 0.456
concat - 0.529 0.492 0.495 - 0.457 0.464 0.458
Prop Con-Reg - 0.568 0.557 0.576 - 0.471 0.466 0.469
" Dis-Reg - 0.548 0.543 0.563 - 0.464 0.468 0.463

m two baselines cannot outperform the trained system without additional features
m combining VGGish and L3 generally improves on the individual feature results

m approach improves embedding space by using pre-trained features during training

6YA—N, Hung and A. Lerch, “Feature-informed Embedding Space Regularization for Audio Classification,” in Proceedings of the European Signal

Processing Conference (EUSIPCO), Belgrade, Serbia, 2022. por:
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results: data dependency (AR e

m Con-Reg outperforms non-regularized system in all cases

m larger improvement for lower amounts of data

= Con-Reg = Won et al.
0.475

0.450
0.425
0.400

0.375
10% 30% 50% 70% 90%

7YA—N, Hung and A. Lerch, “Feature-informed Embedding Space Regularization for Audio Classification,” in Proceedings of the European Signal
Processing Conference (EUSIPCO), Belgrade, Serbia, 2022. por:
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m observation

® pre-trained deep models can be very powerful if trained with sufficient data, even for
different tasks

m idea
® re-using pre-trained models for a new task without re-training
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m observation

® pre-trained deep models can be very powerful if trained with sufficient data, even for
different tasks

m idea
® re-using pre-trained models for a new task without re-training

m goals

® keep number of training parameters minimal
® utilize unmodified network trained on different task
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m inspired by
® transfer learning
® adversarial learning
m allows for small trainable model (input and output processmg)

Data Input —| Reprogramming Pre-trained Model

Label Mapping i—A Target classes

P!
\ black-box
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m OpenMic:

® 20 classes of musical instruments
® 10s audio snippets (20000)
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m Baseline AST:

® state of the art performance on audio event classification®

m ablation study:
® CNN only
® U-Net only
® CNN + AST + FC
® U-Net + AST + FC

8YA Gong, Y.-A. Chung, and J. Glass, “AST: Audio Spectrogram Transformer,” in Proceedings of Interspeech, arXiv: 2104.01778, Brno,
Czechia, Jul. 2021.
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method | F1 (macro) | train. param. (M) ) y
AST + simple output mapping 62.03 0.001 t.
CNN 60.77 0.017

U-Net 62.73 0.017 g o

CNN + AST + FC 78.08 0.017 =

U-Net + AST + FC 81.60 0.018

m a powerful model trained on a different task cannot easily be used directly
m proper input and output processing can significantly improve performance

m re-programming can beat the state-of-the-art with a fraction of trainable
parameters (at least factor 10)

H.-H. Chen and A. Lerch, “Music Instrument Classification Reprogrammed,” in Proceedings of the International Conference on Multimedia
Modeling (MMM), Bergen, Norway, 2023.
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learning with insufficient data L

m literature presents many ways of dealing with insufficient data
data augmentation

data synthesis

transfer learning

semi- and self-supervised approaches

m we presented 3 recent approaches
® state-of-the-art semi-supervised learning
® a novel self-supervised regularization loss
® reprogramming for audio classification

m all approaches perform at or above the state-of-the-art with different trade-offs
between
® training complexity
® inference complexity
® classification accuracy
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