audio classification with insufficient data

alexander lerch

about ●	intro 000	data 00	semi-supervised 0000000	representation	reprogramming 00000	
introd					Georgia Tect	' Music 8y

education

- Electrical Engineering (Technical University Berlin)
- Tonmeister (music production, University of Arts Berlin)

professional

- Associate Professor at the School of Music, Georgia Institute of Technology
- 2000-2013: CEO at zplane.development

background

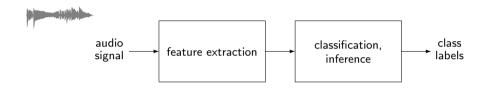
- audio algorithm design (20+ years)
- commercial music software development (10+ years)
- entrepreneurship (10+ years)

- audio classification: one of the earliest and seminal tasks in Music Information Retrieval (MIR)
- includes, e.g.,
 - music/speech classification
 - genre classification
 - musical instrument recognition
 - mood recognition
 - music auto-tagging
 - artist classification
 - . . .
- non-music related
 - speaker detection
 - audio event detection



- audio classification: one of the earliest and seminal tasks in Music Information Retrieval (MIR)
- includes, e.g.,
 - music/speech classification
 - genre classification
 - musical instrument recognition
 - mood recognition
 - music auto-tagging
 - artist classification
 - . . .
- non-music related
 - speaker detection
 - audio event detection
 - ٠

. . .



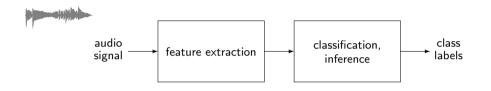
feature representation

- compact and non-redundant
- task-relevant
- easy to analyze
- e.g., MFCCs etc.

classification

- map or convert feature to comprehensible domain
- e.g., Support Vector Machines etc.

¹J. J. Burred and A. Lerch, "Hierarchical Automatic Audio Signal Classification," *Journal of the Audio Engineering Society (JAES)*, vol. 52, no. 7/8, pp. 724–739, 2004.



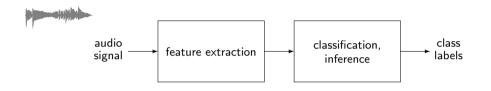
feature representation

- compact and non-redundant
- task-relevant
- easy to analyze
- e.g., MFCCs etc.

classification

- map or convert feature to comprehensible domain
- e.g., Support Vector Machines etc.

¹J. J. Burred and A. Lerch, "Hierarchical Automatic Audio Signal Classification," *Journal of the Audio Engineering Society (JAES)*, vol. 52, no. 7/8, pp. 724–739, 2004.



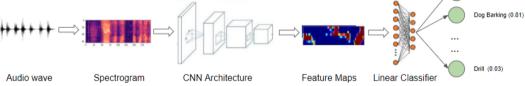
feature representation

- compact and non-redundant
- task-relevant
- easy to analyze
- e.g., MFCCs etc.

classification

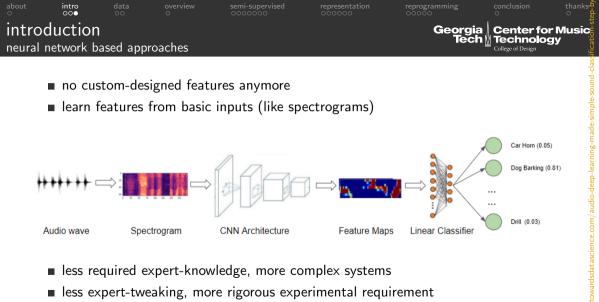
- map or convert feature to comprehensible domain
- e.g., Support Vector Machines etc.

¹J. J. Burred and A. Lerch, "Hierarchical Automatic Audio Signal Classification," *Journal of the Audio Engineering Society (JAES)*, vol. 52, no. 7/8, pp. 724–739, 2004.



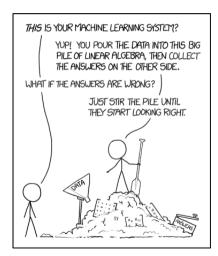
less required expert-knowledge, more complex systems
less expert-tweaking, more rigorous experimental requirement
much higher data requirements

... ...

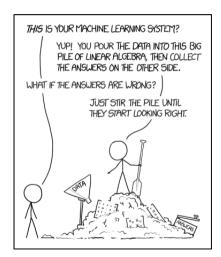


- less required expert-knowledge, more complex systems
- less expert-tweaking, more rigorous experimental requirement
- much higher data requirements

- mapping function is learned from patterns and characteristics **from data**
- ⇒ model success largely depends on training data
- general challenges concerning data
 - noisiness
 - subjectivity
 - imbalance, bias, and diversity
 - amount



- mapping function is learned from patterns and characteristics **from data**
- ⇒ model success largely depends on training data
- general challenges concerning data
 - noisiness
 - subjectivity
 - imbalance, bias, and diversity
 - amount



- mapping function is learned from patterns and characteristics from data
- ⇒ model success largely depends on training data
- **general challenges** concerning data
 - noisiness
 - subjectivity
 - imbalance, bias, and diversity
 - amount

- mapping function is learned from patterns and characteristics from data
- ⇒ model success largely depends on training data
- **general challenges** concerning data
 - noisiness
 - subjectivity
 - imbalance, bias, and diversity
 - amount

	intro 000	data ⊙●	semi-supervised 0000000	representation	reprogramming 00000		
data insufficie	nt data				Georgia Tech	Center for Technology College of Design	Music Y

insufficient data in music

over

semi-supervised

representation

reprogrammin 00000 conclusion

thank 0

insufficient data in music

data

00

8

- music data itself is not scarce (although there might be copyright issues...)
- consumer annotations are more difficult to collect, but there are some large collections

over

semi-supervised

representation

reprogrammir 00000 conclusion

thank

insufficient data in music

data

00

- music data itself is not scarce (although there might be copyright issues...)
- consumer annotations are more difficult to collect, but there are some large collections
- detailed musical annotations are hard to come by, because
 - time consuming and tedious annotation process
 - experts needed for annotations

	intro 000	data 00	overview •	semi-supervised	representation	reprogramming 00000	
OVErv overviev						Georgia Tech	' Music 9y

1 semi-supervised learning

• utilize unlabeled data to improve classification

2 self-supervised representation learning

• utilize pre-trained features to improve classification

3 reprogramming

• utilize pre-trained model to improve classification

observation:

- unlabeled data is readily available
 - example: OpenMIC dataset (musical instrument classification)

Data Point	+	• • • • • • • • • • • • • • • • • • •	HH+ H	***	tin man	****
	Guitar	Drum	Bass	Violin	Piano	Flute
Fully Labeled	1	1	1	×	1	×
Partially Labeled	1	1	?	×	?	?

goal:

• utilize unlabeled data for training to improve inference

observation:

- unlabeled data is readily available
 - example: OpenMIC dataset (musical instrument classification)

Data Point	***	- 	+++++++	***	h hma ha	****
	Guitar	Drum	Bass	Violin	Piano	Flute
Fully Labeled	1	1	1	×	1	×
Partially Labeled	1	1	?	×	?	?

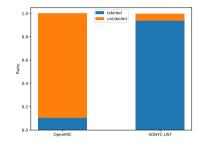
goal:

• utilize unlabeled data for training to improve inference

Georgia Center for Music Tech Technology College of Design

OpenMic:

- 20 classes of musical instruments
- 10 s audio snippets (20000)
- 90% of labels are missing
- SONYC Urban Sound Tagging:
 - 23 classes of urban noise
 - 10 s audio snippets (13538 + 4308 + 669)
 - 6% of labels are missing



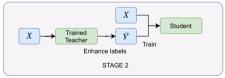
- Baseline 0 (B0):
 - missing labels are treated as negative labels
 - "standard approach"
- Baseline 1 (B1):
 - missing labels are masked out of the loss function

■ stage 1:

- assume all missing labels are negative
- train a teacher system

stage 2:

- predict labels with teacher
- train student with combined training set/likely predicted labels
- mask the loss for unlikely negatives

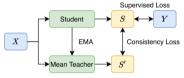


²E. Fonseca, S. Hershey, M. Plakal, *et al.*, "Addressing Missing Labels in Large-Scale Sound Event Recognition Using a Teacher-Student Framework With Loss Masking," *IEEE Signal Processing Letters*, vol. 27, pp. 1235–1239, 2020, Conference Name: IEEE Signal Processing Letters, ISSN: 1558-2361. DOI: 10.1109/LSP.2020.3006378.

teacher and student are trained simultaneously

semi-supervised

- teacher is exponential average (EMA) of student
- consistency loss is computed from the teacher predictions
- student is updated with both consistency loss and binary cross-entropy loss



³P. Bachman, O. Alsharif, and D. Precup, "Learning with Pseudo-Ensembles," in *Advances in Neural Information Processing Systems*, vol. 27, Curran Associates, Inc., 2014.

semi-supervised audio classification results: classification

- general observations
 - B0 always worse performance
 - B1 much better but can be outperformed
- (i) OpenMic:
 - Mean Teacher outperforms Label Enhancing
- (iii) SONYC Urban Sound Tagging:
 - comparable performance of Mean Teacher and Label Enhancing

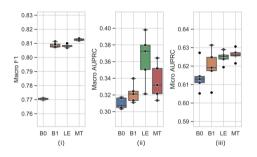
Symposium on Multimedia (ISM), online: Institute of Electrical and Electronics Engineers (IEEE), 2021.

0000

conclusio

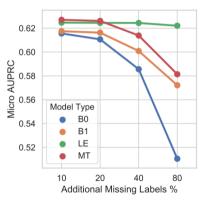
thank:

Georgia Center for Music Tech



⁴S. Gururani and A. Lerch, "Semi-Supervised Audio Classification with Partially Labeled Data," in *Proceedings of the IEEE International*

- removing labels from SONYC Urban Sound Tagging
 - baselines deteriorate much faster



⁵S. Gururani and A. Lerch, "Semi-Supervised Audio Classification with Partially Labeled Data," in *Proceedings of the IEEE International*

Symposium on Multimedia (ISM), online: Institute of Electrical and Electronics Engineers (IEEE), 2021.

question:

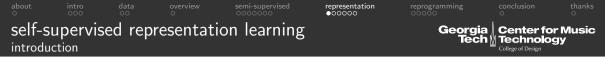
• how can we provide extra training information without additional data labels (related approaches: transfer learning, multi-task learning)

idea:

• use proven pre-trained features (e.g., VGGish, OpenL3)

goals:

- *impart knowledge* of pre-trained deep models (VGGish, L3)
- improve model generalization by utilizing pre-trained features
- use pre-trained features only during training



question:

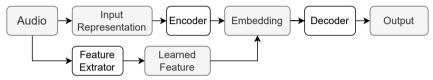
• how can we provide extra training information without additional data labels (related approaches: transfer learning, multi-task learning)

idea:

• use proven pre-trained features (e.g., VGGish, OpenL3)

goals:

- *impart knowledge* of pre-trained deep models (VGGish, L3)
- improve model generalization by utilizing pre-trained features
- use pre-trained features only during training



method 1: "Con-Reg"

make embedding space more similar to embedding space of features

method 2: "Dis-Reg"

• force distances between pairs of embedding vectors to be similar to feature distances

- standard transfer learning
 - 1 extract features with pre-trained network
 - 2 train classifier for new task with feature input
- concatenation:
 - concatenate the pre-trained features and the learned embeddings
 - classifier has the combined information (trained and pre-trained)

■ DCASE 17:

- 17 audio event classes
- 10 s audio snippets (pprox 53000)

MagnaTagATune (MTAT):

- 50 music tags
- 30 s audio snippets (pprox 21000)

	Methods		DCAS	SE 17 (F1)			MTAT (PR-AUC)		
		None	VGGish	OpenL3	Combined	None	VGGish	OpenL3	Combined
	Won et al.	0.547	-	-	-	0.465	-	-	-
BL	transfer	-	0.496	0.477	0.501	-	0.454	0.454	0.456
DL	concat	-	0.529	0.492	0.495	-	0.457	0.464	0.458
Dron	Con-Reg	-	0.568	<u>0.557</u>	<u>0.576</u>	-	<u>0.471</u>	<u>0.466</u>	0.469
Prop.	Dis-Reg	-	<u>0.548</u>	0.543	<u>0.563</u>	-	0.464	<u>0.468</u>	0.463

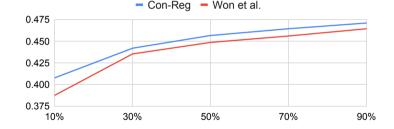
• two baselines cannot outperform the trained system without additional features

• combining VGGish and L3 generally improves on the individual feature results

■ approach improves embedding space by using pre-trained features during training

⁶Y.-N. Hung and A. Lerch, "Feature-informed Embedding Space Regularization for Audio Classification," in *Proceedings of the European Signal Processing Conference (EUSIPCO)*, Belgrade, Serbia, 2022. DOI: 10.48550/arXiv.2206.04850.

- Con-Reg outperforms non-regularized system in all cases
- larger improvement for lower amounts of data



⁷Y.-N. Hung and A. Lerch, "Feature-informed Embedding Space Regularization for Audio Classification," in *Proceedings of the European Signal Processing Conference (EUSIPCO)*, Belgrade, Serbia, 2022. DOI: 10.48550/arXiv.2206.04850.

observation

• pre-trained deep models can be very powerful if trained with sufficient data, even for different tasks

idea

re-using pre-trained models for a new task without re-training

goals

- keep number of training parameters minimal
- utilize unmodified network trained on different task

observation

• pre-trained deep models can be very powerful if trained with sufficient data, even for different tasks

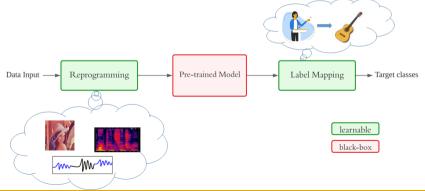
idea

re-using pre-trained models for a new task without re-training

goals

- keep number of training parameters minimal
- utilize unmodified network trained on different task

- inspired by
 - transfer learning
 - adversarial learning
- allows for small trainable model (input and output processing)



- OpenMic:
 - 20 classes of musical instruments
 - 10 s audio snippets (20000)

- Baseline AST:
 - state of the art performance on audio event classification⁸
- ablation study:
 - CNN only
 - U-Net only
 - CNN + AST + FC
 - U-Net + AST + FC

⁸Y. Gong, Y.-A. Chung, and J. Glass, "AST: Audio Spectrogram Transformer," in *Proceedings of Interspeech*, arXiv: 2104.01778, Brno, Czechia, Jul. 2021.

intro 000	data 00		semi-supervised	representation	reprogramming 0000●	
 g ramm classifica	ing tion metr	rics			Georgia Tech	r Music 9y

method	F1 (macro)	train. param. (M)	MIC over OpenMIC comparis
AST + simple output mapping	62.03	0.001	2 78.3 2 77.
CNN	60.77	0.017	2 270
U-Net	62.73	0.017	5 00,7 00,7
CNN + AST + FC	78.08	0.017	ASTRES CANNES ASTARD ASTCHNER RF /
$U\operatorname{-Net}+AST+FC$	81.60	0.018	

- a powerful model trained on a different task cannot easily be used directly
- proper input and output processing can significantly improve performance
- re-programming can beat the state-of-the-art with a fraction of trainable parameters (at least factor 10)

⁹H.-H. Chen and A. Lerch, "Music Instrument Classification Reprogrammed," in *Proceedings of the International Conference on Multimedia Modeling (MMM)*, Bergen, Norway, 2023.

intro 000	data 00		semi-supervised	representation	reprogramming 00000	conclusion ●	
usion	ufficient o	data			Georgi Tecl	a Center for h M Technolog College of Design	· Music Jy
			с I II				

- literature presents many ways of dealing with insufficient data
 - data augmentation
 - data synthesis
 - transfer learning
 - semi- and self-supervised approaches
 - . . .
- we presented 3 recent approaches
 - state-of-the-art semi-supervised learning
 - a novel self-supervised regularization loss
 - reprogramming for audio classification
- all approaches perform at or above the state-of-the-art with different trade-offs between
 - training complexity
 - inference complexity
 - classification accuracy

	intro 000
thank	you!

ove

semi-supervise

representation

reprogrammin 00000 onclusion

thanks

contact

Alexander Lerch: alexander.lerch@gatech.edu

www.AudioContentAnalysis.org www.alexanderlerch.com

Music Informatics Group musicinformatics.gatech.edu

